Bio


Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University, and the William George and Ida Mary Hoover Faculty Fellow. Professor Finn's research interests lie in the ability to enable robots and other agents to develop broadly intelligent behavior through learning and interaction. Her work lies at the intersection of machine learning and robotic control, including topics such as end-to-end learning of visual perception and robotic manipulation skills, deep reinforcement learning of general skills from autonomously collected data, and meta-learning algorithms that can enable fast learning of new concepts and behaviors. Professor Finn received her Bachelors degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Presidential Early Career Award for Scientists and Engineers, and the MIT Technology Review 35 under 35 list, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across three universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.

Academic Appointments


Honors & Awards


  • Presidential Early Career Award for Scientists and Engineers, United States federal government (2025)
  • Research Fellowship, Alfred P. Sloan Foundation (2023)
  • Early Academic Career Award in Robotics and Automation, IEEE RAS (2022)
  • Young Investigator Award, Office of Naval Research (2021)
  • Microsoft Faculty Fellowship, Microsoft (2020)
  • ACM Doctoral Dissertation Award, ACM (2019)
  • 35 Under 35 Innovator, MIT Technology Review (2018)
  • C.V. Ramamoorthy Distinguished Research Award, UC Berkeley (2017)

Program Affiliations


  • Symbolic Systems Program

2025-26 Courses


Stanford Advisees


All Publications


  • SRT-H: A hierarchical framework for autonomous surgery via language-conditioned imitation learning. Science robotics Kim, J. W., Chen, J. T., Hansen, P., Shi, L. X., Goldenberg, A., Schmidgall, S., Scheikl, P. M., Deguet, A., White, B. M., Tsai, D. R., Cha, R. J., Jopling, J., Finn, C., Krieger, A. 2025; 10 (104): eadt5254

    Abstract

    Research on autonomous surgery has largely focused on simple task automation in controlled environments. However, real-world surgical applications demand dexterous manipulation over extended durations and robust generalization to the inherent variability of human tissue. These challenges remain difficult to address using existing logic-based or conventional end-to-end learning strategies. To address this gap, we propose a hierarchical framework for performing dexterous, long-horizon surgical steps. Our approach uses a high-level policy for task planning and a low-level policy for generating low-level trajectories. The high-level planner plans in language space, generating task-level or corrective instructions that guide the robot through the long-horizon steps and help recover from errors made by the low-level policy. We validated our framework through ex vivo experiments on cholecystectomy, a commonly practiced minimally invasive procedure, and conducted ablation studies to evaluate key components of the system. Our method achieves a 100% success rate across eight different ex vivo gallbladders, operating fully autonomously without human intervention. The hierarchical approach improved the policy's ability to recover from suboptimal states that are inevitable in the highly dynamic environment of realistic surgical applications. This work demonstrates step-level autonomy in a surgical procedure, marking a milestone toward clinical deployment of autonomous surgical systems.

    View details for DOI 10.1126/scirobotics.adt5254

    View details for PubMedID 40632876

  • Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models Chen, A. S., Lessing, A. M., Tang, A., Chada, G., Smith, L., Levine, S., Finn, C. edited by Ott, C. IEEE. 2025: 12826-12833
  • CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models Zhao, Q., Lu, Y., Kim, M., Fu, Z., Zhang, Z., Wu, Y., Li, Z., Ma, Q., Han, S., Finn, C., Handa, A., Lin, T., Wetzstein, G., Liu, M., Xiang, D., IEEE COMPUTER SOC IEEE COMPUTER SOC. 2025: 1702-1713
  • SPEEDTUNING: Speeding Up Policy Execution with Lightweight Reinforcement Learning Yuan, D. D., Zhao, T. Z., Burns, K., Finn, C. edited by Ott, C. IEEE. 2025: 1184-1192
  • RoboCrowd: Scaling Robot Data Collection through Crowdsourcing Mirchandani, S., Yuan, D. D., Burns, K., Islam, M., Zhao, T. Z., Finn, C., Sadigh, D. edited by Ott, C. IEEE. 2025: 1392-1399
  • A Tutorial on Meta-Reinforcement Learning FOUNDATIONS AND TRENDS IN MACHINE LEARNING Beck, J., Vuorio, R., Liu, E., Xiong, Z., Zintgraf, L., Finn, C., Whiteson, S. 2025; 18 (2-3)

    View details for DOI 10.1561/2200000080

    View details for Web of Science ID 001462355200001

  • Bayesian Embeddings for Few-Shot Open World Recognition. IEEE transactions on pattern analysis and machine intelligence Willes, J., Harrison, J., Harakeh, A., Finn, C., Pavone, M., Waslander, S. L. 2024; 46 (3): 1513-1529

    Abstract

    As autonomous decision-making agents move from narrow operating environments to unstructured worlds, learning systems must move from a closed-world formulation to an open-world and few-shot setting in which agents continuously learn new classes from small amounts of information. This stands in stark contrast to modern machine learning systems that are typically designed with a known set of classes and a large number of examples for each class. In this work we extend embedding-based few-shot learning algorithms to the open-world recognition setting. We combine Bayesian non-parametric class priors with an embedding-based pre-training scheme to yield a highly flexible framework which we refer to as few-shot learning for open world recognition (FLOWR). We benchmark our framework on open-world extensions of the common MiniImageNet and TieredImageNet few-shot learning datasets. Our results show, compared to prior methods, strong classification accuracy performance and up to a 12% improvement in H-measure (a measure of novel class detection) from our non-parametric open-world few-shot learning scheme.

    View details for DOI 10.1109/TPAMI.2022.3201541

    View details for PubMedID 36063507

  • A Fast and Accurate Machine Learning Autograder for the Breakout Assignment Liu, E., Yuan, D., Ahmed, A., Cornwall, E., Woodrow, J., Burns, K., Nie, A., Brunskill, E., Piech, C., Assoc Computing Machinery ASSOC COMPUTING MACHINERY. 2024: 736-742
  • Evaluating Real-World Robot Manipulation Policies in Simulation Li, X., Hsu, K., Gu, J., Pertsch, K., Mees, O., Walke, H., Fu, C., Lunawat, I., Sieh, I., Kirmani, S., Levine, S., Wu, J., Finn, C., Su, H., Vuong, Q., Xiao, T. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • HumanPlus: Humanoid Shadowing and Imitation from Humans Fu, Z., Zhao, Q., Wu, Q., Wetzstein, G., Finn, C. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • OpenVLA: An Open-Source Vision-Language-Action Model Kim, M., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., Rafailov, R., Foster, E., Sanketi, P., Vuong, Q., Kollar, T., Burchfiel, B., Tedrake, R., Sadigh, D., Levine, S., Liang, P., Finn, C. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • What Makes Pre-Trained Visual Representations Successful for Robust Manipulation? Burns, K., Witzel, Z., Ibn Hamid, J., Yu, T., Finn, C., Hausman, K. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • Mobile ALOHA: Learning Bimanual Mobile Manipulation using Low-Cost Whole-Body Teleoperation Fu, Z., Zhao, T. Z., Finn, C. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • Robotic Control via Embodied Chain-of-Thought Reasoning Zawalski, M., Chen, W., Pertsch, K., Mees, O., Finn, C., Levine, S. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • Decomposing the Generalization Gap in Imitation Learning for Visual Robotic Manipulation Xie, A., Lee, L., Xiao, T., Finn, C., IEEE IEEE. 2024: 3153-3160
  • Efficient Imitation Learning with Conservative World Models Kolev, V., Rafailov, R., Hatch, K., Wu, J., Finn, C. edited by Abate, A., Cannon, M., Margellos, K., Papachristodoulou, A. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024: 1776-1789
  • Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning Yang, J., Mark, M., Vu, B., Sharma, A., Bohg, J., Finn, C., IEEE IEEE. 2024: 4804-4811
  • PIGEON: Predicting Image Geolocations Haas, L., Skreta, M., Alberti, S., Finn, C., IEEE IEEE COMPUTER SOC. 2024: 12893-12902
  • SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning Luo, J., Hu, Z., Xu, C., Tan, Y., Berg, J., Sharma, A., Schaal, S., Finn, C., Gupta, A., Levine, S., IEEE IEEE. 2024: 16961-16969
  • Disentangling Length from Quality in Direct Preference Optimization Park, R., Rafailov, R., Ermon, S., Finn, C. edited by Martins, A., Srikumar, Ku, L. W. ASSOC COMPUTATIONAL LINGUISTICS-ACL. 2024: 4998-5017
  • Clarify: Improving Model Robustness With Natural Language Corrections Lee, Y., Lam, M. S., Vasconcelos, H., Bernstein, M. S., Finn, C., ACM ASSOC COMPUTING MACHINERY. 2024
  • Surgical Robot Transformer (SRT): Imitation Learning for Surgical Tasks Kim, J., Zhao, T. Z., Schmidgall, S., Deguet, A., Kobilarov, M., Finn, C., Krieger, A. edited by Kroemer, O., Agrawal, P., Burgard, W. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2024
  • Open X-Embodiment: Robotic Learning Datasets and RT-X Models O'Neill, A., Rehman, A., Gupta, A., Maddukuri, A., Gupta, A., Padalkar, A., Lee, A., Pooley, A., Gupta, A., Mandlekar, A., Jain, A., Tung, A., Bewley, A., Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Gupta, A., Wang, A., Kolobov, A., Singh, A., Garg, A., Kembhavi, A., Xie, A., Brohan, A., Raffin, A., Sharma, A., Yavary, A., Jain, A., Balakrishna, A., Wahid, A., Burgess-Limerick, B., Kim, B., Scholkopf, B., Wulfe, B., Ichter, B., Lu, C., Xu, C., Le, C., Finn, C., Wang, C., Xu, C., Chi, C., Huang, C., Chan, C., Agia, C., Pan, C., Fu, C., Devin, C., Xu, D., Morton, D., Driess, D., Chen, D., Pathak, D., Shah, D., Buchler, D., Jayaraman, D., Kalashnikov, D., Sadigh, D., Johns, E., Foster, E., Liu, F., Ceola, F., Xia, F., Zhao, F., Frujeri, F., Stulp, F., Zhou, G., Sukhatme, G. S., Salhotra, G., Yan, G., Feng, G., Schiavi, G., Berseth, G., Kahn, G., Yang, G., Wang, G., Su, H., Fang, H., Shi, H., Bao, H., Ben Amor, H., Christensen, H., Furuta, H., Bharadhwaj, H., Walke, H., Fang, H., Ha, H., Mordatch, I., Radosavovic, I., Leal, I., Liang, J., Abou-Chakra, J., Kim, J., Drake, J., Peters, J., Schneider, J., Hsu, J., Vakil, J., Bohg, J., Bingham, J., Wu, J., Gao, J., Hu, J., Wu, J., Wu, J., Sun, J., Luo, J., Gu, J., Tan, J., Oh, J., Wu, J., Lu, J., Yang, J., Malik, J., Silverio, J., Hejna, J., Booher, J., Tompson, J., Yang, J., Salvador, J., Lim, J. J., Han, J., Wang, K., Rao, K., Pertsch, K., Hausman, K., Go, K., Gopalakrishnan, K., Goldberg, K., Byrne, K., Oslund, K., Kawaharazuka, K., Black, K., Lin, K., Zhang, K., Ehsani, K., Lekkala, K., Ellis, K., Rana, K., Srinivasan, K., Fang, K., Singh, K., Zeng, K., Hatch, K., Hsu, K., Itti, L., Chen, L., Pinto, L., Li Fei-Fei, Tan, L., Fan, L., Ott, L., Lee, L., Weihs, L., Chen, M., Lepert, M., Memmel, M., Tomizuka, M., Itkina, M., Castro, M., Spero, M., Du, M., Ahn, M., Yip, M. C., Zhang, M., Ding, M., Heo, M., Srirama, M., Sharma, M., Kim, M., Kanazawa, N., Hansen, N., Heess, N., Joshi, N. J., Suenderhauf, N., Liu, N., Di Palo, N., Shafiullah, N., Mees, O., Kroemer, O., Bastani, O., Sanketi, P. R., Miller, P., Yin, P., Wohlhart, P., Xu, P., Fagan, P., Mitrano, P., Sermanet, P., Abbeel, P., Sundaresan, P., Chen, Q., Vuong, Q., Rafailov, R., Tian, R., Doshi, R., Martin-Martin, R., Baijal, R., Scalise, R., Hendrix, R., Lin, R., Qian, R., Zhang, R., Mendonca, R., Shah, R., Hoque, R., Julian, R., Bustamante, S., Kirmani, S., Levine, S., Lin, S., Moore, S., Bahl, S., Dass, S., Sonawani, S., Tulsiani, S., Song, S., Xu, S., Haldar, S., Karamcheti, S., Adebola, S., Guist, S., Nasiriany, S., Schaal, S., Welker, S., Tian, S., Ramamoorthy, S., Dasari, S., Belkhale, S., Park, S., Nair, S., Mirchandani, S., Osa, T., Gupta, T., Harada, T., Matsushima, T., Xiao, T., Kollar, T., Yu, T., Ding, T., Davchev, T., Zhao, T. Z., Armstrong, T., Darrell, T., Chung, T., Jain, V., Kumar, V., Vanhoucke, V., Zhan, W., Zhou, W., Burgard, W., Chen, X., Chen, X., Wang, X., Zhu, X., Geng, X., Liu, X., Xu Liangwei, Li, X., Pang, Y., Lu, Y., Ma, Y., Kim, Y., Chebotar, Y., Zhou, Y., Zhu, Y., Wu, Y., Xu, Y., Wang, Y., Bisk, Y., Dou, Y., Cho, Y., Lee, Y., Cui, Y., Cao, Y., Wu, Y., Tang, Y., Zhu, Y., Zhang, Y., Jiang, Y., Li, Y., Li, Y., Iwasawa, Y., Matsuo, Y., Ma, Z., Xu, Z., Cui, Z., Zhang, Z., Fu, Z., Lin, Z., IEEE IEEE. 2024: 6892-6903
  • Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of Foundation Models Henderson, P., Mitchell, E., Manning, C. D., Jurafsky, D., Finn, C., ACM ASSOC COMPUTING MACHINERY. 2023: 287-296
  • Contrastive Example-Based Control Hatch, K., Eysenbach, B., Rafailov, R., Yu, T., Salakhutdinov, R., Levine, S., Finn, C. edited by Pappas, G. J., Matni, N., Morari, M. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • Robot Parkour Learning Zhuang, Z., Fu, Z., Wang, J., Atkeson, C., Schwertfeger, S., Finn, C., Zhao, H. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • RoboCLIP: One Demonstration is Enough to Learn Robot Policies Sontakke, S. A., Zhang, J., Arnold, S. M. R., Pertsch, K., Biyik, E., Sadigh, D., Finn, C., Itti, L. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Waypoint-Based Imitation Learning for Robotic Manipulation Shi, L., Sharma, A., Zhao, T. Z., Finn, C. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement Learning Sharma, A., Ahmed, A. M., Ahmad, R., Finn, C. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot Learning Rafailov, R., Hatch, K., Kolev, V., Martin, J. D., Phielipp, M., Finn, C. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • Polybot: Training One Policy Across Robots While Embracing Variability Yang, J., Sadigh, D., Finn, C. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • BridgeData V2: A Dataset for Robot Learning at Scale Walke, H., Black, K., Lee, A., Kim, M., Du, M., Zheng, C., Zhao, T., Hansen-Estruch, P., Vuong, Q., He, A., Myers, V., Fang, K., Finn, C., Levine, S. edited by Tan, J., Toussaint, M., Darvish, K. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2023
  • Disentanglement via Latent Quantization Hsu, K., Dorrell, W., Whittington, J. C. R., Wu, J., Finn, C. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning Nakamoto, M., Zhai, Y., Singh, A., Mark, M., Ma, Y., Finn, C., Kumar, A., Levine, S. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Neural Functional Transformers Zhou, A., Yang, K., Jiang, Y., Burns, K., Xu, W., Sokota, S., Kolter, J., Finn, C. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Permutation Equivariant Neural Functionals Zhou, A., Yang, K., Burns, K., Cardace, A., Jiang, Y., Sokota, S., Kolter, J., Finn, C. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Train Offline, Test Online: A Real Robot Learning Benchmark Zhou, G., Dean, V., Srirama, M., Rajeswaran, A., Pari, J., Hatch, K., Jain, A., Yu, T., Abbeel, P., Pinto, L., Finn, C., Gupta, A., IEEE IEEE. 2023: 9197-9203
  • NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis Zhou, A., Kim, M., Wang, L., Florence, P., Finn, C., IEEE IEEE COMPUTER SOC. 2023: 17907-17917
  • Supervised Pretraining Can Learn In-Context Reinforcement Learning Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C., Nachum, O., Brunskill, E. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Direct Preference Optimization: Your Language Model is Secretly a Reward Model Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Manning, C. D., Finn, C. edited by Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2023
  • Play it by Ear: Learning Skills amidst Occlusion through Audio-Visual Imitation Learning Du, M., Lee, O. Y., Nair, S., Finn, C. edited by Hauser, K., Shell, D., Huang, S. RSS FOUNDATION-ROBOTICS SCIENCE & SYSTEMS FOUNDATION. 2022
  • A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning Sharma, A., Ahmad, R., Finn, C. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022: 19645-19657
  • Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations Zhang, M., Sohoni, N. S., Zhang, H. R., Finn, C., Re, C. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain Datasets Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K., Finn, C., Levine, S. edited by Hauser, K., Shell, D., Huang, S. RSS FOUNDATION-ROBOTICS SCIENCE & SYSTEMS FOUNDATION. 2022
  • Memory-Based Model Editing at Scale Mitchell, E., Lin, C., Bosselut, A., Manning, C. D., Finn, C. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • Robust Policy Learning over Multiple Uncertainty Sets Xie, A., Sodhani, S., Finn, C., Pineau, J., Zhang, A. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • How to Leverage Unlabeled Data in Offline Reinforcement Learning Yu, T., Kumar, A., Chebotar, Y., Hausman, K., Finn, C., Levine, S. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • Improving Out-of-Distribution Robustness via Selective Augmentation Yao, H., Wang, Y., Li, S., Zhang, L., Liang, W., Zou, J., Finn, C. edited by Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2022
  • Training and Evaluation of Deep Policies Using Reinforcement Learning and Generative Models JOURNAL OF MACHINE LEARNING RESEARCH Ghadirzadeh, A., Poklukar, P., Arndt, K., Finn, C., Kyrki, V., Kragic, D., Bjorkman, M. 2022; 23
  • Batch Exploration With Examples for Scalable Robotic Reinforcement Learning IEEE ROBOTICS AND AUTOMATION LETTERS Chen, A. S., Nam, H., Nair, S., Finn, C. 2021; 6 (3): 4401–8
  • Recovery RL: Safe Reinforcement Learning With Learned Recovery Zones IEEE ROBOTICS AND AUTOMATION LETTERS Thananjeyan, B., Balakrishna, A., Nair, S., Luo, M., Srinivasan, K., Hwang, M., Gonzalez, J. E., Ibarz, J., Finn, C., Goldberg, K. 2021; 6 (3): 4915-4922
  • How to train your robot with deep reinforcement learning: lessons we have learned INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH Ibarz, J., Tan, J., Finn, C., Kalakrishnan, M., Pastor, P., Levine, S. 2021; 40 (4-5): 698-721
  • WILDS: A Benchmark of in-the-Wild Distribution Shifts Koh, P., Sagawa, S., Marklund, H., Xie, S., Zhang, M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips, R., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B. A., Haque, I. S., Beery, S., Leskovec, J., Kundaje, A., Pierson, E., Levine, S., Finn, C., Liang, P. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic Platforms Ghadirzadeh, A., Chen, X., Poklukar, P., Finn, C., Bjorkman, M., Kragic, D., IEEE IEEE. 2021: 1274-1280
  • Offline Meta-Reinforcement Learning with Advantage Weighting Mitchell, E., Rafailov, R., Peng, X., Levine, S., Finn, C. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Deep Reinforcement Learning amidst Continual Structured Non-Stationarity Xie, A., Harrison, J., Finn, C. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Learning Generalizable Robotic Reward Functions from "In-The-Wild" Human Videos Chen, A. S., Nair, S., Finn, C. edited by Shell, D. A., Toussaint, M., Hsieh, M. A. RSS FOUNDATION-ROBOTICS SCIENCE & SYSTEMS FOUNDATION. 2021
  • Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices Liu, E., Raghunathan, A., Liang, P., Finn, C. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Just Train Twice: Improving Group Robustness without Training Group Information Liu, E., Haghgoo, B., Chen, A. S., Raghunathan, A., Koh, P., Sagawa, S., Liang, P., Finn, C. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Catformer: Designing Stable Transformers via Sensitivity Analysis Davis, J., Gu, A., Choromanski, K., Dao, T., Re, C., Finn, C., Liang, P. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic Skills Chebotar, Y., Hausman, K., Lu, Y., Xiao, T., Kalashnikov, D., Varley, J., Irpan, A., Eysenbach, B., Julian, R., Finn, C., Levine, S. edited by Meila, M., Zhang, T. JMLR-JOURNAL MACHINE LEARNING RESEARCH. 2021
  • Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction Wu, B., Nair, S., Martin-Martin, R., Li Fei-Fei, Finn, C., IEEE COMP SOC IEEE COMPUTER SOC. 2021: 2318-2328
  • Scalable Multi-Task Imitation Learning with Autonomous Improvement Singh, A., Jang, E., Irpan, A., Kappler, D., Dalal, M., Levinev, S., Khansari, M., Finn, C., IEEE IEEE. 2020: 2167-2173
  • OmniTact: A Multi-Directional High-Resolution Touch Sensor Padmanabha, A., Ebert, F., Tian, S., Calandra, R., Finn, C., Levine, S., IEEE IEEE. 2020: 618-624
  • Meta-Inverse Reinforcement Learning with Probabilistic Context Variables Yu, L., Yu, T., Finn, C., Ermon, S. edited by Wallach, H., Larochelle, H., Beygelzimer, A., d'Alche-Buc, F., Fox, E., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2019
  • Unsupervised Curricula for Visual Meta-Reinforcement Learning Jabri, A., Hsu, K., Eysenbach, B., Gupta, A., Levine, S., Finn, C. edited by Wallach, H., Larochelle, H., Beygelzimer, A., d'Alche-Buc, F., Fox, E., Garnett, R. NEURAL INFORMATION PROCESSING SYSTEMS (NIPS). 2019
  • Unsupervised Visuomotor Control through Distributional Planning Networks Yu, T., Shevchuk, G., Sadigh, D., Finn, C. edited by Bicchi, A., KressGazit, H., Hutchinson, S. MIT PRESS. 2019
  • One-Shot Composition of Vision-Based Skills from Demonstration Yu, T., Abbeel, P., Levine, S., Finn, C., IEEE IEEE. 2019: 2643–50