
Tiffany Chun-An Wang
Ph.D. Student in Applied Physics, admitted Autumn 2020
All Publications
-
Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates.
Science advances
2023; 9 (20): eadf6655
Abstract
The search for superconductivity in infinite-layer nickelates was motivated by analogy to the cuprates, and this perspective has framed much of the initial consideration of this material. However, a growing number of studies have highlighted the involvement of rare-earth orbitals; in that context, the consequences of varying the rare-earth element in the superconducting nickelates have been much debated. Here, we show notable differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: They are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer's doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. Such robust and tunable superconductivity suggests potential in future high-field applications.
View details for DOI 10.1126/sciadv.adf6655
View details for PubMedID 37196089