All Publications


  • Effects of rare-earth magnetism on the superconducting upper critical field in infinite-layer nickelates. Science advances Wang, B. Y., Wang, T. C., Hsu, Y. T., Osada, M., Lee, K., Jia, C., Duffy, C., Li, D., Fowlie, J., Beasley, M. R., Devereaux, T. P., Fisher, I. R., Hussey, N. E., Hwang, H. Y. 2023; 9 (20): eadf6655

    Abstract

    The search for superconductivity in infinite-layer nickelates was motivated by analogy to the cuprates, and this perspective has framed much of the initial consideration of this material. However, a growing number of studies have highlighted the involvement of rare-earth orbitals; in that context, the consequences of varying the rare-earth element in the superconducting nickelates have been much debated. Here, we show notable differences in the magnitude and anisotropy of the superconducting upper critical field across the La-, Pr-, and Nd-nickelates. These distinctions originate from the 4f electron characteristics of the rare-earth ions in the lattice: They are absent for La3+, nonmagnetic for the Pr3+ singlet ground state, and magnetic for the Nd3+ Kramer's doublet. The unique polar and azimuthal angle-dependent magnetoresistance found in the Nd-nickelates can be understood to arise from the magnetic contribution of the Nd3+ 4f moments. Such robust and tunable superconductivity suggests potential in future high-field applications.

    View details for DOI 10.1126/sciadv.adf6655

    View details for PubMedID 37196089