Bio


Daniela Marin is a first-year graduate student at Stanford University. She previously worked as a post-undergraduate researcher at the National Renewable Energy Laboratory and worked toward advancing the commercialization of bio-derived materials and methods of plastics recycling. Daniela holds a B.S. in Chemical Engineering and a B.A. in Physics through a dual-degree program with Columbia University and William Jewell College. Her education is combined with undergraduate research that focused on mitigating the effects of viscous fingering using step-growth polymerization to stabilize the instability. Her transition to Columbia introduced her to the field of atmospheric aerosols where she worked with Professor V. Faye McNeill’s group to investigate a photoinduced particle growth process and its role in secondary organic aerosol formation. She is enthusiastic about using her technical abilities and interest in the environment to contribute to Stanford Chemical Engineering's mission of developing technologies that will improve and maintain environmental health.

Education & Certifications


  • B.A., William Jewell College, Physics (2019)
  • B.S., Columbia University, Chemical Engineering (2019)

All Publications


  • Protocol for assembling and operating bipolar membrane water electrolyzers. STAR protocols Rios Amador, I., Hannagan, R. T., Marin, D. H., Perryman, J. T., Rémy, C., Hubert, M. A., Lindquist, G. A., Chen, L., Stevens, M. B., Boettcher, S. W., Nielander, A. C., Jaramillo, T. F. 2023; 4 (4): 102606

    Abstract

    Renewable energy-driven bipolar membrane water electrolyzers (BPMWEs) are a promising technology for sustainable production of hydrogen from seawater and other impure water sources. Here, we present a protocol for assembling BPMWEs and operating them in a range of water feedstocks, including ultra-pure deionized water and seawater. We describe steps for membrane electrode assembly preparation, electrolyzer assembly, and electrochemical evaluation. For complete details on the use and execution of this protocol, please refer to Marin et al. (2023).1.

    View details for DOI 10.1016/j.xpro.2023.102606

    View details for PubMedID 37924520

  • PolyID: Artificial Intelligence for Discovering Performance-Advantaged and Sustainable Polymers MACROMOLECULES Wilson, A., St John, P. C., Marin, D. H., Hoyt, C. B., Rognerud, E. G., Nimlos, M. R., Cywar, R. M., Rorrer, N. A., Shebek, K. M., Broadbelt, L. J., Beckham, G. T., Crowley, M. F. 2023
  • Hydrogen production with seawater-resilient bipolar membrane electrolyzers JOULE Marin, D. H., Perryman, J. T., Hubert, M. A., Lindquist, G. A., Chen, L., Aleman, A. M., Kamat, G. A., Niemann, V. A., Stevens, M., Regmi, Y. N., Boettcher, S. W., Nielander, A. C., Jaramillo, T. F. 2023; 7 (4): 765-781
  • Impact of Environmental Conditions on Secondary Organic Aerosol Production from Photosensitized Humic Acid ENVIRONMENTAL SCIENCE & TECHNOLOGY Fankhauser, A. M., Bourque, M., Almazan, J., Marin, D., Fernandez, L., Hutheesing, R., Ferdousi, N., Tsui, W. G., McNeill, V. 2020; 54 (9): 5385–90

    Abstract

    Recent studies have shown the potential of the photosensitizer chemistry of humic acid, as a proxy for humic-like substances in atmospheric aerosols, to contribute to secondary organic aerosol mass. The mechanism requires particle-phase humic acid to absorb solar radiation and become photoexcited, then directly or indirectly oxidize a volatile organic compound (VOC), resulting in a lower volatility product in the particle phase. We performed experiments in a photochemical chamber, with aerosol-phase humic acid as the photosensitizer and limonene as the VOC. In the presence of 26 ppb limonene and under atmospherically relevant UV-visible irradiation levels, there is no significant change in particle diameter. Calculations show that SOA production via this pathway is highly sensitive to VOC precursor concentrations. Under the assumption that HULIS is equally or less reactive than the humic acid used in these experiments, the results suggest that the photosensitizer chemistry of HULIS in ambient atmospheric aerosols is unlikely to be a significant source of secondary organic aerosol mass.

    View details for DOI 10.1021/acs.est.9b07485

    View details for Web of Science ID 000530651900013

    View details for PubMedID 32243755

  • Stabilization of miscible viscous fingering by a step growth polymerization reaction EXPERIMENTS IN FLUIDS Stewart, S., Marin, D., Tullier, M., Pojman, J., Meiburg, E., Bunton, P. 2018; 59 (7)
  • Design and validation study of a laboratory scale chemical reactor for non-invasive imaging of macro objects in situ CHEMICAL ENGINEERING JOURNAL Marin, D., Fairlie, M., Bunton, P., Nwosu, C., Parker, J., Franklin, F., Novakovic, K. 2017; 327: 889–97
  • Schlieren imaging of viscous fingering in a horizontal Hele-Shaw cell EXPERIMENTS IN FLUIDS Bunton, P., Marin, D., Stewart, S., Meiburg, E., De Wit, A. 2016; 57 (2)