All Publications


  • From hardware store to hospital: a COVID-19-inspired, cost-effective, open-source, in vivo-validated ventilator for use in resource-scarce regions. Bio-design and manufacturing Park, M. H., Zhu, Y., Wang, H., Tran, N. A., Jung, J., Paulsen, M. J., Imbrie-Moore, A. M., Baker, S., Wilkerson, R., Marin-Cuartas, M., Mullis, D. M., Woo, Y. J. 2021: 1-8

    Abstract

    Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients, and these shortages are especially devastating in developing countries. To help alleviate this strain, we have designed and tested the accessible low-barrier in vivo-validated economical ventilator (ALIVE Vent), a COVID-19-inspired, cost-effective, open-source, in vivo-validated solution made from commercially available components. The ALIVE Vent operates using compressed oxygen and air to drive inspiration, while two solenoid valves ensure one-way flow and precise cycle timing. The device was functionally tested and profiled using a variable resistance and compliance artificial lung and validated in anesthetized large animals. Our functional test results revealed its effective operation under a wide variety of ventilation conditions defined by the American Association of Respiratory Care guidelines for ventilator stockpiling. The large animal test showed that our ventilator performed similarly if not better than a standard ventilator in maintaining optimal ventilation status. The FiO2, respiratory rate, inspiratory to expiratory time ratio, positive-end expiratory pressure, and peak inspiratory pressure were successfully maintained within normal, clinically validated ranges, and the animals were recovered without any complications. In regions with limited access to ventilators, the ALIVE Vent can help alleviate shortages, and we have ensured that all used materials are publicly available. While this pandemic has elucidated enormous global inequalities in healthcare, innovative, cost-effective solutions aimed at reducing socio-economic barriers, such as the ALIVE Vent, can help enable access to prompt healthcare and life saving technology on a global scale and beyond COVID-19.Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-021-00164-1.

    View details for DOI 10.1007/s42242-021-00164-1

    View details for PubMedID 34567825

  • Exvivo biomechanical analysis of the Ross procedure using the modified inclusion technique in a 3-dimensionally printed left heart simulator. The Journal of thoracic and cardiovascular surgery Zhu, Y., Marin-Cuartas, M., Park, M. H., Imbrie-Moore, A. M., Wilkerson, R. J., Madira, S., Mullis, D. M., Woo, Y. J. 2021

    Abstract

    OBJECTIVE: The inclusion technique was developed to reinforce the pulmonary autograft to prevent dilation after the Ross procedure. Anticommissural plication (ACP), a modification technique, can reduce graft size and create neosinuses. The objective was to evaluate pulmonary valve biomechanics using the inclusion technique in the Ross procedure with and without ACP.METHODS: Seven porcine and 5 human pulmonary autografts were harvested from hearts obtained from a meat abattoir and from heart transplant recipients and donors, respectively. Five additional porcine autografts without reinforcement were used as controls. The Ross procedure was performed using the inclusion technique with a straight polyethylene terephthalate graft. The same specimens were tested both with and without ACP. Hemodynamic parameter data, echocardiography, and high-speed videography were collected via the exvivo heart simulator.RESULTS: Porcine autograft regurgitation was significantly lower after the use of inclusion technique compared with controls (P<.01). ACP compared with non-ACP in both porcine and human pulmonary autografts was associated with lower leaflet rapid opening velocity (3.9±2.4cm/sec vs 5.9±2.4cm/sec; P=.03; 3.5±0.9cm/sec vs 4.4±1.0cm/sec; P=.01), rapid closing velocity (1.9±1.6cm/sec vs 3.1±2.0cm/sec; P=.01; 1.8±0.7cm/sec vs 2.2±0.3cm/sec; P=.13), relative rapid opening force (4.6±3.0 vs 7.7±5.2; P=.03; 3.0±0.6 vs 4.0±2.1; P=.30), and relative rapid closing force (2.5±3.4 vs 5.9±2.3; P=.17; 1.4±1.3 vs 2.3±0.6; P=.25).CONCLUSIONS: The Ross procedure using the inclusion technique demonstrated excellent hemodynamic parameter results. The ACP technique was associated with more favorable leaflet biomechanics. Invivo validation should be performed to allow direct translation to clinical practice.

    View details for DOI 10.1016/j.jtcvs.2021.06.070

    View details for PubMedID 34625236

  • A neonatal leporine model of age-dependent natural heart regeneration after myocardial infarction. The Journal of thoracic and cardiovascular surgery Wang, H., Hironaka, C. E., Mullis, D. M., Lucian, H. J., Shin, H. S., Tran, N. A., Thakore, A. D., Anilkumar, S., Wu, M. A., Paulsen, M. J., Zhu, Y., Baker, S. W., Woo, Y. J. 2021

    Abstract

    OBJECTIVES: Neonatal rodents and piglets naturally regenerate the injured heart after myocardial infarction. We hypothesized that neonatal rabbits also exhibit natural heart regeneration after myocardial infarction.METHODS: New Zealand white rabbit kits underwent sham surgery or left coronary ligation on postnatal day 1 (n=94), postnatal day 4 (n=11), or postnatal day 7 (n=52). Hearts were explanted 1day postsurgery to confirm ischemic injury, at 1week postsurgery to assess cardiomyocyte proliferation, and at 3weeks postsurgery to assess left ventricular ejection fraction and scar size. Data are presented as mean±standard deviation.RESULTS: Size of ischemic injury as a percentage of left ventricular area was similar after myocardial infarction on postnatal day 1 versus on postnatal day 7 (42.3%±5.4% vs 42.3%±4.7%, P=.9984). Echocardiography confirmed severely reduced ejection fraction at 1day after postnatal day 1 myocardial infarction (33.7%±5.3% vs 65.2%±5.5% for postnatal day 1 sham, P=.0001), but no difference at 3weeks after postnatal day 1 myocardial infarction (56.0%±4.0% vs 58.0%±3.3% for postnatal day 1 sham, P=.2198). Ejection fraction failed to recover after postnatal day 4 myocardial infarction (49.2%±1.8% vs 58.5%±5.8% for postnatal day 4 sham, P=.0109) and postnatal day 7 myocardial infarction (39.0%±7.8% vs 60.2%±5.0% for postnatal day 7 sham, P<.0001). At 3weeks after infarction, fibrotic scar represented 5.3%±1.9%, 14.3%±4.9%, and 25.4%±13.3% of the left ventricle area in the postnatal day 1, postnatal day 4, and postnatal day 7 groups, respectively. An increased proportion of peri-infarct cardiomyocytes expressed Ki67 (15.9%±1.8% vs 10.2%±0.8%, P=.0039) and aurora B kinase (4.0%±0.9% vs 1.5%±0.6%, P=.0088) after postnatal day 1 myocardial infarction compared with sham, but no increase was observed after postnatal day 7 myocardial infarction.CONCLUSIONS: A neonatal leporine myocardial infarction model reveals that newborn rabbits are capable of age-dependent natural heart regeneration.

    View details for DOI 10.1016/j.jtcvs.2021.08.013

    View details for PubMedID 34649718

  • Reductively Stable Hydrogen-Bonding Ligands Featuring Appended CF2-H Units JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Shanahan, J. P., Mullis, D. M., Zeller, M., Szymczak, N. K. 2020; 142 (19): 8809–17

    Abstract

    We present the development of ligands featuring the unconventional hydrogen bond donor, -CF2H, within a metal's secondary coordination sphere. When metalated with palladium, o-CF2H-functionalized 1,10-phenanthroline provides highly directed H-bonding interactions with Pd-coordinated substrates. Spectroscopic and computational analyses with a series of X-type ligand acceptors (-F, -Cl, -Br, -OR) establish the H-bonding interaction strength for the -CF2H group (∼3 kcal/mol). The synthesis of Pd0/Ni0 complexes and subsequent coupling (Ni) highlight the unique reductive and base compatibility of the -CF2H hydrogen bond donor group.

    View details for DOI 10.1021/jacs.0c01718

    View details for Web of Science ID 000535252100035

    View details for PubMedID 32352797