Academic Appointments


  • Associate Professor, Geophysics

Administrative Appointments


  • Affiliated Faculty Member, Institute for Computational and Mathematical Engineering, Stanford University (2011 - Present)
  • Assistant Professor, Department of Geophysics, Stanford University (2009 - Present)
  • Lecturer on Applied Mathematics, School of Engineering and Applied Sciences, Harvard University (2008 - 2009)
  • Research Associate in Geophysics, Department of Earth and Planetary Sciences, Harvard University (2007 - 2009)
  • Reginald A. Daly Postdoctoral Fellow, Department of Earth and Planetary Sciences, Harvard University (2005 - 2007)

Honors & Awards


  • School of Earth Sciences Excellence in Teaching Award, Stanford University (2014)
  • NSF CAREER award on Subduction Zone Hazards: Megathrust Rupture Dynamics and Tsunamis, National Science Foundation (2013-2017)
  • Fellow, Physics, Alfred P. Sloan Foundation (2012)
  • Best Poster Award, Society of Industrial and Applied Mathematics (SIAM) Geosciences (2011)
  • Terman Fellow, Stanford University (2009-2012)
  • Certificate of Distinction in Teaching, Harvard University (2008)
  • Editors' Citation for Excellence in Refereeing, Geophysical Research Letters (2007)
  • Student Presentation Award, Seismological Society of America (2004)
  • Outstanding Student Paper, American Geophysical Union (2004)
  • UCSB Affiliates Graduate Dissertation Fellowship, University of California, Santa Barbara (2004)
  • Outstanding Student Paper, American Geophysical Union (2002)
  • Graduate Fellow, National Defense Science and Engineering (2001-2005)
  • John Cardy Award, UCSB Physics (2001)
  • James W. Elkins Award, University of Virginia Physics (2000)
  • B.S. Physics with Highest Distinction, University of Virginia (2000)
  • Parsons Fellow in computational science, University of California, Santa Barbara, Physics (2000)
  • Member, Phi Beta Kappa (1999)
  • Jefferson Scholar, University of Virginia (1996-2000)

Boards, Advisory Committees, Professional Organizations


  • Advisory Board, Computational Geosciences MS Program, Institute for Computational and Mathematical Engineering, Stanford Univeristy (2012 - Present)
  • Co-leader of Computational Science disciplinary group, member of Planning Committee, Southern California Earthquake Center (SCEC) (2012 - Present)
  • Stanford School of Earth Sciences Council, Stanford University (2011 - Present)
  • Undergraduate Premajor Advisor, Stanford University (2010 - Present)
  • Invited speaker, Stanford Club of Marin (2015 - 2015)
  • Invited speaker for Stanford Admit Weekend, Academic Expo, Stanford University (2015 - 2015)
  • Faculty search committee, member, Department of Geophysics, Stanford University (2014 - 2015)
  • External Program review panel member, USGS-NEHRP (National Earthquake Hazards Reduction Program) (2014 - 2014)
  • Invited speaker, American Geophysical Union Fall Meeting (two invited talks) (2014 - 2014)
  • Invited speaker, Penn State (2014 - 2014)
  • Invited speaker, Incorporated Research Institutions for Seismology, Grand Challenges in Faulting and Deformation Processes (2014 - 2014)
  • Invited speaker, Southern California Earthquake Center (SCEC) Annual Meeting (2014 - 2014)
  • Invited speaker, Stanford Alumni Club of the Desert (2014 - 2014)
  • Invited speaker, Caltech (2014 - 2014)
  • Invited speaker, Computational Infrastructure for Geodynamics Crustal Deformation Modeling Workshop (2014 - 2014)
  • Invited speaker for Stanford Admit Weekend, Academic Expo, Stanford University (2014 - 2014)
  • Invited speaker, Annual meeting, Seismological Society of America (2014 - 2014)
  • Invited speaker, Rock and Fluid Physics: Academic and Industrial Perspectives Conference, Shell Technology Centre, Amsterdam (2014 - 2014)
  • Geophysics Admissions Committee, Stanford University (2013 - 2014)
  • School of Earth Sciences Teaching Task Force, Stanford University (2013 - 2014)
  • Co-organizer for annual meeting special session on Earthquake Source Physics, Seismological Society of America (2013 - 2013)
  • External Program review panel member, USGS-NEHRP (National Earthquake Hazards Reduction Program) (2013 - 2013)
  • Invited speaker, King Abdullah University of Science and Technology (2013 - 2013)
  • Invited speaker, University of British Columbia (2013 - 2013)
  • Invited speaker, Lockheed Martin Advanced Technology Center (2013 - 2013)
  • Invited speaker at New Student Orientation, Engaging with Faculty, Stanford University (2013 - 2013)
  • Invited speaker for Stanford Admit Weekend, Academic Expo, Stanford University (2013 - 2013)
  • Chair, 5th Chinese-American Kavli Frontiers of Science Symposium, Earthquake Mechanics and Forecasting, National Academy of Sciences, (2012 - 2012)
  • Co-organizer for annual meeting special session on Seismicity in Volcanic Environments, Seismological Society of America (2012 - 2012)
  • Invited speaker at New Student Orientation, Engaging with Faculty, Stanford University (2012 - 2012)
  • Invited speaker, Fall Meeting, American Geophysical Union (2012 - 2012)
  • Invited speaker, New Perspective on Great Earthquakes Along Subduction Zones, International Conference (2012 - 2012)
  • Geophysics Department Seminar Series Organizer, Stanford University (2011 - 2012)
  • Co-organizer for Geosciences Minisymposium on Computational Challenges in Earthquake Simulation, Society for Industrial and Applied Mathematics (SIAM) (2011 - 2011)
  • Invited speaker, University of California, Santa Cruz (2011 - 2011)
  • Invited speaker at New Student Orientation, Engaging with Faculty, Stanford University (2011 - 2011)
  • Invited speaker, Fall Meeting, American Geophysical Union (2011 - 2011)
  • Co-convener for International Workshop on Multiscale and Multiphysics Processes in Geomechanics, Stanford University (2010 - 2010)
  • Delegate, Panel on Earthquake Research, U.S.-Japan Natural Resources (UJNR) (2010 - 2010)
  • External Program review panel member, USGS-NEHRP (National Earthquake Hazards Reduction Program) (2010 - 2010)
  • Invited speaker, University of Oregon (2010 - 2010)
  • Invited speaker, University of California, Berkeley, Seismological Laboratory (2010 - 2010)
  • Invited speaker, University of California, Berkeley, Applied Mathematics (2010 - 2010)
  • Invited speaker, Lockheed Martin Advanced Technology Center (2010 - 2010)
  • Invited speaker, Lawrence Livermore National Laboratory (2010 - 2010)
  • Geophysics Undergraduate Curriculum Committee, Stanford University (2009 - 2010)
  • Co-convener, Workshop on Dynamic Weakening Mechanisms, Southern California Earthquake Center (2009 - 2009)
  • Co-organizer for earthquake rupture code validation project, Southern California Earthquake Center (2007 - 2011)
  • Associate Editor, Journal of Geophysical Research-Solid Earth (2005 - 2008)

Professional Education


  • Ph.D., University of California, Santa Barbara, Physics (2005)
  • B.S., University of Virginia, Physics (2000)

Current Research and Scholarly Interests


Research
I study the mechanics and physics of earthquakes, volcanoes, and tsunamis. Our group has been developing numerical models of earthquake rupture propagation that incorporate sophisticated descriptions of the processes within and around the fault zone that are thought to control how fault strength evolves during rapid slip. The models include transport of heat and pore fluid within fault zones, microscopic weakening processes that have been observed in laboratory experiments, and inelastic deformation of the off-fault material. We are using these models to explore how earthquake ruptures excite seismic waves, with a particular focus on strong ground motion and seismic hazard. Recently, my group and I have been working to understand the origin of incoherent high frequency ground motion by directly modeling rupture propagation on fractally rough fault surfaces. We are also studying subduction zone megathrust earthquakes, like the March 2011 Tohoku-Oki event that was responsible for the devastating tsunami in Japan. In addition to the rupture process, we are studying the excitation of ocean acoustic waves and tsunamis in these events. These modeling efforts involve high-performance computing, using resources at the Stanford Center for Computational Earth and Environmental Science and elsewhere. In addition to earthquakes, we study seismic waves from volcanic eruptions. We have developed a code that solves for the fully coupled flow of a compressible, viscous magma through cracks and conduits in deformable solids. We hope to learn about the dynamics of eruptions from seismic signals recorded at Earth's surface.

Teaching
As part of the geophysics undergraduate curriculum I teach a course (Geophysics 120: Ice, Water, Fire) in which we apply the principles of continuum mechanics to explain readily observed properties of tsunamis and ocean waves, volcanic eruptions, and ice sheets and glaciers. At the graduate level, I teach earthquake seismology (Geophysics 287: Earthquake Seismology) and have lead seminars on several topics including strong ground motion modeling for seismic hazard analysis, fluid dynamics of volcanic eruptions, and earthquake rupture dynamics. I am also an affiliated faculty member of Stanford's Institute for Computational and Mathematical Engineering (ICME) program. As part of that program, I teach an undergraduate scientific computing course (CME 108: Introduction to Scientific Computing).

Professional Activities
NSF CAREER award, 2013; Alfred P. Sloan Fellow in Physics, 2012; Co-leader of Computational Science disciplinary group and member of Planning Committee, Southern California Earthquake Center (SCEC), 2011-present; Co-organizer for Seismological Society of America annual meeting special session on Seismicity in Volcanic Environments, 2012; Co-organizer for SIAM Geosciences Minisymposium on Computational Challenges in Earthquake Simulation, 2011; Delegate for U.S.-Japan Natural Resources (UJNR) Panel on Earthquake Research, 2010; Co-convener for International Workshop on Multiscale and Multiphysics Processes in Geomechanics, 2010; USGS-NEHRP (National Earthquake Hazards Reduction Program) External Program review panel, 2010; Co-organizer for Southern California Earthquake Center earthquake rupture code validation project, 2007-present; Co-convener for Southern California Earthquake Center Workshop on Dynamic Weakening Mechanisms, 2009; Associate Editor, Journal of Geophysical Research-Solid Earth, 2005-08; Certificate of Distinction in Teaching, Harvard University, 2008; Editors' Citation for Excellence in Refereeing for Geophysical Research Letters, 2007

Projects


  • Research Project

    Location

    Alaska

  • Research Project

    Location

    Japan

2014-15 Courses


Postdoctoral Advisees


All Publications


  • High-order finite difference modeling of tsunami generation in a compressible ocean from offshore earthquakes COMPUTATIONAL GEOSCIENCES Lotto, G. C., Dunham, E. M. 2015; 19 (2): 327-340
  • Rupture dynamics and ground motions from earthquakes in 2-D heterogeneous media GEOPHYSICAL RESEARCH LETTERS Bydlon, S. A., Dunham, E. M. 2015; 42 (6): 1701-1709
  • Vibrationalmodes of hydraulic fractures: Inference of fracture geometry fromresonant frequencies and attenuation JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Lipovsky, B. P., Dunham, E. M. 2015; 120 (2): 1080-1107
  • Simulation of Earthquake Rupture Dynamics in Complex Geometries Using Coupled Finite Difference and Finite Volume Methods COMMUNICATIONS IN COMPUTATIONAL PHYSICS O'Reilly, O., Nordstrom, J., Kozdon, J. E., Dunham, E. M. 2015; 17 (2): 337-370
  • (submitted) Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids Journal of Computational Physics Duru, K., Dunham, E. M. 2015
  • Constraining shallow slip and tsunami excitation in megathrust ruptures using seismic and ocean acoustic waves recorded on ocean-bottom sensor networks EARTH AND PLANETARY SCIENCE LETTERS Kozdon, J. E., Dunham, E. M. 2014; 396: 56-65
  • An efficient numerical method for earthquake cycles in heterogeneous media: Alternating subbasin and surface-rupturing events on faults crossing a sedimentary basin JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Erickson, B. A., Dunham, E. M. 2014; 119 (4): 3290-3316
  • Predicting fault damage zones by modeling dynamic rupture propagation and comparison with field observations JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Johri, M., Dunham, E. M., Zoback, M. D., Fang, Z. 2014; 119 (2): 1251-1272
  • A 2D Pseudodynamic Rupture Model Generator for Earthquakes on Geometrically Complex Faults BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Trugman, D. T., Dunham, E. M. 2014; 104 (1): 95-112

    View details for DOI 10.1785/0120130138

    View details for Web of Science ID 000330579800006

  • Strong Ground Motion Prediction Using Virtual Earthquakes SCIENCE Denolle, M. A., Dunham, E. M., Prieto, G. A., Beroza, G. C. 2014; 343 (6169): 399-403

    Abstract

    Sedimentary basins increase the damaging effects of earthquakes by trapping and amplifying seismic waves. Simulations of seismic wave propagation in sedimentary basins capture this effect; however, there exists no method to validate these results for earthquakes that have not yet occurred. We present a new approach for ground motion prediction that uses the ambient seismic field. We apply our method to a suite of magnitude 7 scenario earthquakes on the southern San Andreas fault and compare our ground motion predictions with simulations. Both methods find strong amplification and coupling of source and structure effects, but they predict substantially different shaking patterns across the Los Angeles Basin. The virtual earthquake approach provides a new approach for predicting long-period strong ground motion.

    View details for DOI 10.1126/science.1245678

    View details for Web of Science ID 000330039300043

  • Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions NATURE GEOSCIENCE Dmitrieva, K., Hotovec-Ellis, A. J., Prejean, S., Dunham, E. M. 2013; 6 (8): 652-656

    View details for DOI 10.1038/NGEO1879

    View details for Web of Science ID 000322441900018

  • Additional shear resistance from fault roughness and stress levels on geometrically complex faults JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Fang, Z., Dunham, E. M. 2013; 118 (7): 3642-3654

    View details for DOI 10.1002/jgrb.50262

    View details for Web of Science ID 000324952300025

  • Rupture to the Trench: Dynamic Rupture Simulations of the 11 March 2011 Tohoku Earthquake BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Kozdon, J. E., Dunham, E. M. 2013; 103 (2B): 1275-1289

    View details for DOI 10.1785/0120120136

    View details for Web of Science ID 000318277200008

  • Ground motion prediction of realistic earthquake sources using the ambient seismic field JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Denolle, M. A., Dunham, E. M., Prieto, G. A., Beroza, G. C. 2013; 118 (5): 2102-2118
  • Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods JOURNAL OF SCIENTIFIC COMPUTING Kozdon, J. E., Dunham, E. M., Nordstrom, J. 2013; 55 (1): 92-124
  • Solving the Surface-Wave Eigenproblem with Chebyshev Spectral Collocation BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Denolle, M. A., Dunham, E. M., Beroza, G. C. 2012; 102 (3): 1214-1223

    View details for DOI 10.1785/0120110183

    View details for Web of Science ID 000304870500021

  • Special Issue Honoring Professor James R. Rice JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME Lapusta, N., Dunham, E., Gao, H. 2012; 79 (3)

    View details for DOI 10.1115/1.4005965

    View details for Web of Science ID 000303261700001

  • Guided Waves Along Fluid-Filled Cracks in Elastic Solids and Instability at High Flow Rates JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME Dunham, E. M., Ogden, D. E. 2012; 79 (3)

    View details for DOI 10.1115/1.4005961

    View details for Web of Science ID 000303261700021

  • Observation of far-field Mach waves generated by the 2001 Kokoxili supershear earthquake GEOPHYSICAL RESEARCH LETTERS Vallee, M., Dunham, E. M. 2012; 39
  • Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions JOURNAL OF SCIENTIFIC COMPUTING Kozdon, J. E., Dunham, E. M., Nordstrom, J. 2012; 50 (2): 341-367
  • Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 2: Nonplanar Faults BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Dunham, E. M., Belanger, D., Cong, L., Kozdon, J. E. 2011; 101 (5): 2308-2322

    View details for DOI 10.1785/0120100076

    View details for Web of Science ID 000295214100024

  • Earthquake Ruptures with Strongly Rate-Weakening Friction and Off-Fault Plasticity, Part 1: Planar Faults BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Dunham, E. M., Belanger, D., Cong, L., Kozdon, J. E. 2011; 101 (5): 2296-2307

    View details for DOI 10.1785/0120100075

    View details for Web of Science ID 000295214100023

  • Verifying a Computational Method for Predicting Extreme Ground Motion SEISMOLOGICAL RESEARCH LETTERS Harris, R. A., Barall, M., Andrews, D. J., Duan, B., Ma, S., Dunham, E. M., Gabriel, A., Kaneko, Y., Kase, Y., Aagaard, B. T., Oglesby, D. D., Ampuero, J., HANKS, T. C., Abrahamson, N. 2011; 82 (5): 638-644
  • EARTHQUAKE RUPTURES ON ROUGH FAULTS MULTISCALE AND MULTIPHYSICS PROCESSES IN GEOMECHANICS Dunham, E. M., Kozdon, J. E., Belanger, D., Cong, L. 2011: 145-148
  • Coherence of Mach fronts during heterogeneous supershear earthquake rupture propagation: Simulations and comparison with observations JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Bizzarri, A., Dunham, E. M., SPUDICH, P. 2010; 115
  • Postseismic and interseismic fault creep Geophysical Journal International Hetland, E. A., Simons, M., Dunham, E. M. 2010; 181 (1): 81-98
  • Thermo- and hydro-mechanical processes along faults during rapid slip Meso-Scale Shear Physics in Earthquake and Landslide Mechanics Rice, J. R., Dunham, E. M., Noda, H. edited by Hatzor, Y., Sulem, J., Vardoulakis, I. CRC Press. 2010: 3-16
  • Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Noda, H., Dunham, E. M., Rice, J. R. 2009; 114
  • Finite difference modeling of rupture propagation with strong velocity-weakening friction Geophysical Journal International Rojas, O., Dunham, E. M., Day, S. M., Dalguer, L. A., Castillo, J. E. 2009; 179 (3): 1831-1858
  • The SCEC/USGS Dynamic Earthquake Rupture Code Verification Exercise SEISMOLOGICAL RESEARCH LETTERS Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P., Bhat, H., Cruz-Atienza, V., Dalguer, L., Dawson, P., Day, S., Duan, B., Ely, G., Kaneko, Y., Kase, Y., Lapusta, N., Liu, Y., Ma, S., Oglesby, D., OLSEN, K., Pitarka, A., Song, S., Templeton, E. 2009; 80 (1): 119-126
  • Earthquake slip between dissimilar poroelastic materials JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Dunham, E. M., Rice, J. R. 2008; 113 (B9)
  • Attenuation of radiated ground motion and stresses from three-dimensional supershear ruptures JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Dunham, E. M., Bhat, H. S. 2008; 113 (B8)
  • Conditions governing the occurrence of supershear ruptures under slip-weakening friction JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Dunham, E. M. 2007; 112 (B7)
  • Distinguishing barriers and asperities in near-source ground motion JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH Page, M. T., Dunham, E. M., Carlson, J. M. 2005; 110 (B11)
  • Near-source ground motion from steady state dynamic rupture pulses GEOPHYSICAL RESEARCH LETTERS Dunham, E. M., ARCHULETA, R. J. 2005; 32 (3)
  • Dissipative interface waves and the transient response of a three-dimensional sliding interface with Coulomb friction JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS Dunham, E. M. 2005; 53 (2): 327-357
  • Evidence for a supershear transient during the 2002 Denali fault earthquake BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA Dunham, E. M., ARCHULETA, R. J. 2004; 94 (6): S256-S268
  • A supershear transition mechanism for cracks SCIENCE Dunham, E. M., Favreau, P., Carlson, J. M. 2003; 299 (5612): 1557-1559

    Abstract

    Seismic data indicate that fault ruptures follow complicated paths with variable velocity because of inhomogeneities in initial stress or fracture energy. We report a phenomenon unique to three-dimensional cracks: Locally stronger fault sections, rather than slowing ruptures, drive them forward at velocities exceeding the shear wave speed. This supershear mechanism differentiates barrier and asperity models of fault heterogeneity, which previously have been regarded as indistinguishable. High strength barriers concentrate energy, producing potentially destructive pulses of strong ground motion.

    View details for Web of Science ID 000181367900032

    View details for PubMedID 12624262