
Fateme Nateghi Haredasht
Postdoctoral Scholar, Biomedical Informatics
Bio
As a postdoctoral scholar at the Stanford Center for Biomedical Informatics Research, I find myself at the exciting intersection of machine learning and healthcare. My journey began with a PhD in Biomedical Sciences from KU Leuven in Belgium, where I delved into the complexities of machine learning algorithms and their transformative potential in healthcare settings. My research, particularly focused on adapting these algorithms for time-to-event data (a method used for predicting specific events in a patient’s future), has not only been a challenging endeavor but also a deeply fulfilling one.
Now at Stanford, my role involves not just advancing machine learning integration in healthcare, but also collaborating with a diverse team of experts. Together, we're striving to unravel complex healthcare challenges and improve patient outcomes.
Professional Education
-
PhD, KU Leuven, Biomedical sciences (2023)
All Publications
-
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface.
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing
2025; 30: 33-39
Abstract
Artificial Intelligence (AI) technologies are increasingly capable of processing complex and multilayered datasets. Innovations in generative AI and deep learning have notably enhanced the extraction of insights from both unstructured texts, images, and structured data alike. These breakthroughs in AI technology have spurred a wave of research in the medical field, leading to the creation of a variety of tools aimed at improving clinical decision-making, patient monitoring, image analysis, and emergency response systems. However, thorough research is essential to fully understand the broader impact and potential consequences of deploying AI within the healthcare sector.
View details for PubMedID 39670359
-
Predictability of buprenorphine-naloxone treatment retention: A multi-site analysis combining electronic health records and machine learning.
Addiction (Abingdon, England)
2024
Abstract
Opioid use disorder (OUD) and opioid dependence lead to significant morbidity and mortality, yet treatment retention, crucial for the effectiveness of medications like buprenorphine-naloxone, remains unpredictable. Our objective was to determine the predictability of 6-month retention in buprenorphine-naloxone treatment using electronic health record (EHR) data from diverse clinical settings and to identify key predictors.This retrospective observational study developed and validated machine learning-based clinical risk prediction models using EHR data.Data were sourced from Stanford University's healthcare system and Holmusk's NeuroBlu database, reflecting a wide range of healthcare settings. The study analyzed 1800 Stanford and 7957 NeuroBlu treatment encounters from 2008 to 2023 and from 2003 to 2023, respectively.Predict continuous prescription of buprenorphine-naloxone for at least 6 months, without a gap of more than 30 days. The performance of machine learning prediction models was assessed by area under receiver operating characteristic (ROC-AUC) analysis as well as precision, recall and calibration. To further validate our approach's clinical applicability, we conducted two secondary analyses: a time-to-event analysis on a single site to estimate the duration of buprenorphine-naloxone treatment continuity evaluated by the C-index and a comparative evaluation against predictions made by three human clinical experts.Attrition rates at 6 months were 58% (NeuroBlu) and 61% (Stanford). Prediction models trained and internally validated on NeuroBlu data achieved ROC-AUCs up to 75.8 (95% confidence interval [CI] = 73.6-78.0). Addiction medicine specialists' predictions show a ROC-AUC of 67.8 (95% CI = 50.4-85.2). Time-to-event analysis on Stanford data indicated a median treatment retention time of 65 days, with random survival forest model achieving an average C-index of 65.9. The top predictor of treatment retention identified included the diagnosis of opioid dependence.US patients with opioid use disorder or opioid dependence treated with buprenorphine-naloxone prescriptions appear to have a high (∼60%) treatment attrition by 6 months. Machine learning models trained on diverse electronic health record datasets appear to be able to predict treatment continuity with accuracy comparable to that of clinical experts.
View details for DOI 10.1111/add.16587
View details for PubMedID 38923168
-
Improving 1-Year Mortality Prediction After Pediatric Heart Transplantation Using Hypothetical Donor-Recipient Matches
IEEE ACCESS
2024; 12: 89754-89762
View details for DOI 10.1109/ACCESS.2024.3418146
View details for Web of Science ID 001262677900001