Gary Qian
Ph.D. Student in Management Science and Engineering, admitted Autumn 2021
Bio
I am currently a 2nd year PhD student in Management Science and Engineering at Stanford working with Professor Margaret Brandeau. My research focuses on the development of applied mathematical, economic models, and machine learning models to support health policy decisions. My recent work has been focused on HIV prevention and treatment programs, programs to control US opioid epidemic, and policies for minimizing spread of infectious diseases (including COVID-19).
I am passionate about using optimization theory and machine learning to implement scalable solutions in solving complex, real-world problems including but not limited to applications in healthcare.
All Publications
-
Cost-effectiveness of office-based buprenorphine treatment for opioid use disorder.
Drug and alcohol dependence
2022; 243: 109762
Abstract
To assess the effectiveness and cost-effectiveness of office-based buprenorphine treatment (OBBT) in the U.S.We performed a model-based analysis of buprenorphine treatment provided in a primary care setting for the U.S. population with OUD.Buprenorphine treatment provided in a primary care setting.Fatal and nonfatal overdoses and deaths over five years, discounted lifetime quality-adjusted life years (QALYs), costs.For a cohort of 100,000 untreated individuals who enter OBBT, approximately 9350 overdoses would be averted over five years; of these, approximately 900 would have been fatal. OBBT compared to no treatment would yield 1.07 incremental lifetime QALYs per person at an incremental cost of $17,000 per QALY gained when using a healthcare perspective. If OBBT is half as effective and twice as expensive as assumed in the base case, the incremental cost when using a healthcare perspective is $25,500 per QALY gained. Using a limited societal perspective that additionally includes patient costs and criminal justice costs, OBBT is cost-saving compared to no treatment even under pessimistic assumptions about efficacy and cost.Expansion of OBBT would be highly cost-effective compared to no treatment when considered from a healthcare perspective, and cost-saving when reduced criminal justice costs are included. Given the continuing opioid crisis in the U.S., expansion of this care option should be a high priority.
View details for DOI 10.1016/j.drugalcdep.2022.109762
View details for PubMedID 36621198
-
Higher sensitivity monitoring of reactions to COVID-19 vaccination using smartwatches.
NPJ digital medicine
2022; 5 (1): 140
Abstract
More than 12 billion COVID-19 vaccination shots have been administered as of August 2022, but information from active surveillance about vaccine safety is limited. Surveillance is generally based on self-reporting, making the monitoring process subjective. We study participants in Israel who received their second or third Pfizer BioNTech COVID-19 vaccination. All participants wore a Garmin Vivosmart 4 smartwatch and completed a daily questionnaire via smartphone. We compare post-vaccination smartwatch heart rate data and a Garmin-computed stress measure based on heart rate variability with data from the patient questionnaires. Using a mixed effects panel regression to remove participant-level fixed and random effects, we identify considerable changes in smartwatch measures in the 72 h post-vaccination even among participants who reported no side effects in the questionnaire. Wearable devices were more sensitive than questionnaires in determining when participants returned to baseline levels. We conclude that wearable devices can detect physiological responses following vaccination that may not be captured by patient self-reporting. More broadly, the ubiquity of smartwatches provides an opportunity to gather improved data on patient health, including active surveillance of vaccine safety.
View details for DOI 10.1038/s41746-022-00683-w
View details for PubMedID 36085312
-
Surveillance for endemic infectious disease outbreaks: Adaptive sampling using profile likelihood estimation.
Statistics in medicine
2022
Abstract
Outbreaks of an endemic infectious disease can occur when the disease is introduced into a highly susceptible subpopulation or when the disease enters a network of connected individuals. For example, significant HIV outbreaks among people who inject drugs have occurred in at least half a dozen US states in recent years. This motivates the current study: how can limited testing resources be allocated across geographic regions to rapidly detect outbreaks of an endemic infectious disease? We develop an adaptive sampling algorithm that uses profile likelihood to estimate the distribution of the number of positive tests that would occur for each location in a future time period if that location were sampled. Sampling is performed in the location with the highest estimated probability of triggering an outbreak alarm in the next time period. The alarm function is determined by a semiparametric likelihood ratio test. We compare the profile likelihood sampling (PLS) method numerically to uniform random sampling (URS) and Thompson sampling (TS). TS was worse than URS when the outbreak occurred in a location with lower initial prevalence than other locations. PLS had lower time to outbreak detection than TS in some but not all scenarios, but was always better than URS even when the outbreak occurred in a location with a lower initial prevalence than other locations. PLS provides an effective and reliable method for rapidly detecting endemic disease outbreaks that is robust to this uncertainty.
View details for DOI 10.1002/sim.9420
View details for PubMedID 35527474