Professional Education


  • Doctor of Medicine, Universitat Wien (2007)

All Publications


  • Correlation of 68Ga-RM2 PET with Post-Surgery Histopathology Findings in Patients with Newly Diagnosed Intermediate- or High-Risk Prostate Cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Duan, H., Baratto, L., Fan, R. E., Soerensen, S. J., Liang, T., Chung, B. I., Thong, A. E., Gill, H., Kunder, C., Stoyanova, T., Rusu, M., Loening, A. M., Ghanouni, P., Davidzon, G. A., Moradi, F., Sonn, G. A., Iagaru, A. 2022

    Abstract

    Rationale: 68Ga-RM2 targets gastrin-releasing peptide receptors (GRPR), which are overexpressed in prostate cancer (PC). Here, we compared pre-operative 68Ga-RM2 PET to post-surgery histopathology in patients with newly diagnosed intermediate- or high-risk PC. Methods: Forty-one men, 64.0+/-6.7-year-old, were prospectively enrolled. PET images were acquired 42 - 72 (median+/-SD 52.5+/-6.5) minutes after injection of 118.4 - 247.9 (median+/-SD 138.0+/-22.2)MBq of 68Ga-RM2. PET findings were compared to pre-operative mpMRI (n = 36) and 68Ga-PSMA11 PET (n = 17) and correlated to post-prostatectomy whole-mount histopathology (n = 32) and time to biochemical recurrence. Nine participants decided to undergo radiation therapy after study enrollment. Results: All participants had intermediate (n = 17) or high-risk (n = 24) PC and were scheduled for prostatectomy. Prostate specific antigen (PSA) was 8.8+/-77.4 (range 2.5 - 504) ng/mL, and 7.6+/-5.3 (range 2.5 - 28.0) ng/mL when excluding participants who ultimately underwent radiation treatment. Pre-operative 68Ga-RM2 PET identified 70 intraprostatic foci of uptake in 40/41 patients. Post-prostatectomy histopathology was available in 32 patients in which 68Ga-RM2 PET identified 50/54 intraprostatic lesions (detection rate = 93%). 68Ga-RM2 uptake was recorded in 19 non-enlarged pelvic lymph nodes in 6 patients. Pathology confirmed lymph node metastases in 16 lesions, and follow-up imaging confirmed nodal metastases in 2 lesions. 68Ga-PSMA11 and 68Ga-RM2 PET identified 27 and 26 intraprostatic lesions, respectively, and 5 pelvic lymph nodes each in 17 patients. Concordance between 68Ga-RM2 and 68Ga-PSMA11 PET was found in 18 prostatic lesions in 11 patients, and 4 lymph nodes in 2 patients. Non-congruent findings were observed in 6 patients (intraprostatic lesions in 4 patients and nodal lesions in 2 patients). Both 68Ga-RM2 and 68Ga-PSMA11 had higher sensitivity and accuracy rates with 98%, 89%, and 95%, 89%, respectively, compared to mpMRI at 77% and 77%. Specificity was highest for mpMRI with 75% followed by 68Ga-PSMA11 (67%), and 68Ga-RM2 (65%). Conclusion: 68Ga-RM2 PET accurately detects intermediate- and high-risk primary PC with a detection rate of 93%. In addition, it showed significantly higher specificity and accuracy compared to mpMRI and similar performance to 68Ga-PSMA11 PET. These findings need to be confirmed in larger studies to identify which patients will benefit from one or the other or both radiopharmaceuticals.

    View details for DOI 10.2967/jnumed.122.263971

    View details for PubMedID 35552245

  • 68Ga-PSMA-11 PET/MRI in patients with newly diagnosed intermediate or high-risk prostate adenocarcinoma: PET findings correlate with outcomes after definitive treatment. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Moradi, F., Duan, H., Song, H., Davidzon, G. A., Chung, B. I., Thong, A. E., Loening, A. M., Ghanouni, P., Sonn, G., Iagaru, A. 2022

    Abstract

    Prostate-specific membrane antigen (PSMA) PET offers superior accuracy to other imaging modalities in initial staging of prostate cancer and is more likely to affect management. We examined the prognostic value of 68Ga-PSMA-11 uptake in primary lesion and presence of metastatic disease on PET in newly diagnosed prostate cancer patients prior to initial therapy. Methods: In a prospective study from April 2016 to December 2020, 68Ga-PSMA-11 PET/MRI was done in men with new diagnosis of intermediate or high-grade prostate cancer who were candidates for prostatectomy. Patients were followed up after initial therapy for up to 5 years. We examined the Kendall correlation between PET (intense uptake in primary lesion and presence of metastatic disease) and clinical and pathologic findings (grade group, extraprostatic extension, nodal involvement) relevant for risk stratification, and examined the relationship between PET findings and outcome using Kaplan-Meier analysis. Results: Seventy-three men, 64.0±6.3 years of age were imaged. Seventy-two had focal uptake in prostate and in 20 (27%), PSMA-avid metastatic disease was identified. Uptake correlated with grade group and prostate-specific antigen (PSA). Presence of PSMA metastasis correlated with grade group and pathologic nodal stage. PSMA PET had higher per-patients positivity than nodal dissection in patients with only 5-15 nodes removed (8/41 vs. 3/41) but lower positivity if more than 15 nodes were removed (13/21 vs. 10/21). High uptake in primary (SUVmax>12.5, P = .008) and presence of PSMA metastasis (P = .013) were associated with biochemical failure, and corresponding hazard ratios for recurrence within 2-years (4.93 and 3.95, respectively) were similar or higher than other clinicopathologic prognostic factors. Conclusions: 68Ga-PSMA-11 PET can risk stratify patients with intermediate or high-grade prostate cancer prior to prostatectomy based on degree of uptake in prostate and presence of metastatic disease.

    View details for DOI 10.2967/jnumed.122.263897

    View details for PubMedID 35512996

  • Evaluation of Liver and Renal Toxicity in Peptide Receptor Radionuclide Therapy for Somatostatin Receptor Expressing Tumors: A 2-Year Follow-Up ONCOLOGIST Duan, H., Ferri, V., Fisher, G., Shaheen, S., Davidzon, G., Iagaru, A., Aparici, C. 2022
  • Phantom study of SPECT/CT augmented reality for intraoperative localization of sentinel lymph nodes in head and neck melanoma. Oral oncology Nakamoto, R., Zhuo, J., Guja, K. E., Duan, H., Perkins, S. L., Leuze, C., Daniel, B. L., Franc, B. L. 1800; 125: 105702

    Abstract

    OBJECTIVE: To show that augmented reality (AR) visualization of single-photon emission computed tomography (SPECT)/computed tomography (CT) data in 3D can be used to accurately localize targets in the head and neck region.MATERIALS AND METHODS: Eight head and neck styrofoam phantoms were painted with a mixture of radioactive solution (Tc-99m) detectable with a handheld gamma probe and fluorescent ink visible only under ultraviolet (UV) light to create 10-20 simulated lymph nodes on their surface. After obtaining SPECT/CT images of these phantoms, virtual renderings of the nodes were generated from the SPECT/CT data and displayed using a commercially available AR headset. For each of three physician evaluators, the time required to localize lymph node targets was recorded (1) using the gamma probe alone and (2) using the gamma probe while wearing the AR headset. In addition, the surface localization accuracy when using the AR headset was evaluated by measuring the misalignment between the locations visually marked by the evaluators and the ground truth locations identified using UV stimulation of the ink at the site of the nodes.RESULTS: For all three evaluators, using the AR headset significantly reduced the time to detect targets (P=0.012, respectively) compared to using the gamma probe alone. The average misalignment between the location marked by the evaluators and the ground truth location was 8.6mm.CONCLUSION: AR visualization of SPECT/CT data in 3D allows for accurate localization of targets in the head and neck region, and may reduce the localization time of targets.

    View details for DOI 10.1016/j.oraloncology.2021.105702

    View details for PubMedID 34991004

  • Radiotheranostics - Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics Duan, H., Iagaru, A., Aparici, C. M. 1800; 6 (1): 103-117

    Abstract

    'See what you treat and treat what you see, at a molecular level', could be the motto of theranostics. The concept implies diagnosis (imaging) and treatment of cells (usually cancer) using the same molecule, thus guaranteeing a targeted cytotoxic approach of the imaged tumor cells while sparing healthy tissues. As the brilliant late Sam Gambhir would say, the imaging agent acts like a 'molecular spy' and reveals where the tumoral cells are located and the extent of disease burden (diagnosis). For treatment, the same 'molecular spy' docks to the same tumor cells, this time delivering cytotoxic doses of radiation (treatment). This duality represents the concept of a 'theranostic pair', which follows the scope and fundamental principles of targeted precision and personalized medicine. Although the term theranostic was noted in medical literature in the early 2000s, the principle is not at all new to nuclear medicine. The first example of theranostic dates back to 1941 when Dr. Saul Hertz first applied radioiodine for radionuclide treatment of thyroid cells in patients with hyperthyroidism. Ever since, theranostics has been an integral element of nuclear medicine and molecular imaging. The more we understand tumor biology and molecular pathology of carcinogenesis, including specific mutations and receptor expression profiles, the more specific these 'molecular spies' can be developed for diagnostic molecular imaging and subsequent radionuclide targeted therapy (radiotheranostics). The appropriate selection of the diagnostic and therapeutic radionuclide for the 'theranostic pair' is critical and takes into account not only the type of cytotoxic radiation emission, but also the linear energy transfer (LET), and the physical half-lives. Advances in radiochemistry and radiopharmacy with new radiolabeling techniques and chelators are revolutionizing the field. The landscape of cytotoxic systemic radionuclide treatments has dramatically expanded through the past decades thanks to all these advancements. This article discusses present and promising future theranostic applications for various types of diseases such as thyroid disorders, neuroendocrine tumors (NET), pediatric malignancies, and prostate cancer (PC), and provides an outlook for future perspectives.

    View details for DOI 10.7150/ntno.64141

    View details for PubMedID 34976584

  • 68Ga-PSMA11 PET/CT for biochemically recurrent prostate cancer: Influence of dual-time and PMT- vs SiPM-based detectors. Translational oncology Duan, H., Baratto, L., Hatami, N., Liang, T., Mari Aparici, C., Davidzon, G. A., Iagaru, A. 2021; 15 (1): 101293

    Abstract

    OBJECTIVES: 68Ga-PSMA11 PET/CT is excellent for evaluating biochemically recurrent prostate cancer (BCR PC). Here, we compared the positivity rates of dual-time point imaging using a PET/CT scanner (DMI) with silicon photomultiplier (SiPM) detectors and a PET/CT scanner (D690) with photomultiplier tubes (PMT), in patients with BCR PC.METHODS: Fifty-eight patients were prospectively recruited and randomized to receive scans on DMI followed by D690 or vice-versa. Images from DMI were reconstructed using the block sequential regularized expectation maximization (BSREM) algorithm and images from D690 were reconstructed using ordered subset expectation maximization (OSEM), according to the vendor's recommendations. Two readers independently reviewed all images in randomized order, recorded the number and location of lesions, as well as standardized uptake value (SUV) measurements.RESULTS: Twenty-eight patients (group A) had DMI as first scanner followed by D690, while 30 patients (group B) underwent scans in reversed order. Mean PSA was 30±112.9 (range 0.3-600.66)ng/mL for group A and 41.5±213.2 (range 0.21-1170) ng/mL for group B (P=0.796). The positivity rate in group A was 78.6% (22/28 patients) vs. 73.3% (22/30 patients) in group B. Although the performance of the two scanners was equivalent on a per-patient basis, DMI identified 5 additional sites of suspected recurrent disease when used as first scanner. The second scan time point did not reveal additional abnormal uptake.CONCLUSIONS: The delayed time point in 68Ga-PSMA11 PET/CT did not show a higher positivity rate. SiPM-based PET/CT identified additional lesions. Further studies with larger cohorts are needed to confirm these results.

    View details for DOI 10.1016/j.tranon.2021.101293

    View details for PubMedID 34823095

  • Pilot-phase PET/CT study targeting integrin alphavbeta6 in pancreatic cancer patients using the cystine-knot peptide-based 18F-FP-R01-MG-F2. European journal of nuclear medicine and molecular imaging Nakamoto, R., Ferri, V., Duan, H., Hatami, N., Goel, M., Rosenberg, J., Kimura, R., Wardak, M., Haywood, T., Kellow, R., Shen, B., Park, W., Iagaru, A., Gambhir, S. S. 2021

    Abstract

    PURPOSE: A novel cystine-knot peptide-based PET radiopharmaceutical, 18F-FP-R01-MG-F2 (knottin), was developed to selectively bind to human integrin alphavbeta6 which is overexpressed in pancreatic cancer. The purpose of this study is to evaluate the safety, biodistribution, dosimetry, and lesion uptake of 18F-FP-R01-MG-F2 in patients with pancreatic cancer.METHODS: Fifteen patients (6 men, 9 women) with histologically confirmed pancreatic cancer were prospectively enrolled and underwent knottin PET/CT between March 2017 and February 2021 (ClinicalTrials.gov Identifier NCT02683824). Vital signs and laboratory results were collected before and after the imaging scans. Maximum standardized uptake values (SUVmax) and mean SUV (SUVmean) were measured in 24 normal tissues and pancreatic cancer lesions for each patient. From the biodistribution data, the organ doses and whole-body effective dose were calculated using OLINDA/EXM software.RESULTS: There were no significant changes in vital signs or laboratory values that qualified as adverse events or serious adverse events. At 1h post-injection, areas of high 18F-FP-R01-MG-F2 uptake included the pituitary gland, stomach, duodenum, kidneys, and bladder (average SUVmean: 9.7-14.5). Intermediate uptake was found in the normal pancreas (average SUVmean: 4.5). Mild uptake was found in the lungs and liver (average SUVmean<1.0). The effective dose was calculated to be 2.538*10-2mSv/MBq. Knottin PET/CT detected all known pancreatic tumors in the 15 patients, although it did not detect small peri-pancreatic lymph nodes of less than 1cm in short diameter in two of three patients who had lymph node metastases at surgery. Knottin PET/CT detected distant metastases in the lungs (n=5), liver (n=4), and peritoneum (n=2), confirmed by biopsy and/or contrast-enhanced CT.CONCLUSION: 18F-FP-R01-MG-F2 is a safe PET radiopharmaceutical with an effective dose comparable to other diagnostic agents. Evaluation of the primary pancreatic cancer and distant metastases with 18F-FP-R01-MG-F2 PET is feasible, but larger studies are required to define the role of this approach.TRIAL REGISTRATION: NCT02683824.

    View details for DOI 10.1007/s00259-021-05595-7

    View details for PubMedID 34729628

  • PROSPECTIVE STUDY OF (68)GA-RM2 PET/MRI IN PATIENTS WITH BIOCHEMICALLY RECURRENT PROSTATE CANCER AND NEGATIVE CONVENTIONAL IMAGING Baratto, L., Song, H., Duan, H., Moradi, F., Davidzon, G., Iagaru, A. LIPPINCOTT WILLIAMS & WILKINS. 2021: E1178
  • Reduced Acquisition Time Per Bed Position for PET/MRI Using 68Ga-RM2 or 68Ga-PSMA11 in Patients With Prostate Cancer: A Retrospective Analysis. AJR. American journal of roentgenology Duan, H., Baratto, L., Hatami, N., Liang, T., Levin, C. S., Khalighi, M. M., Iagaru, A. 2021

    Abstract

    Background: Growing clinical adoption of PET/MRI for prostate cancer (PC) evaluation has increased interest in reducing PET/MRI scan times. Reducing acquisition time per bed position below current times of at least 5 minutes would allow shorter examination lengths. Objective: To evaluate the effect of different reduced PET acquisition times in patients with PC who underwent 68Ga-PSMA11 or 68Ga-RM2 PET/MRI using highly sensitive silicon photomultiplier-based PET detectors. Methods: This study involved retrospective review of men with PC who underwent PET/MRI as part of one of two prospective trials. Fifty men (mean age, 69.9±6.8 years) who underwent 68Ga-RM2 PET/MRI and 50 men (66.6±5.7 years) who underwent 68Ga-PSMA11 PET/MRI were included. PET/MRI used a time-of-flight-enabled system with silicon photomultiplier-based detectors. Acquisition time was 4 minutes per bed position. PET data were reconstructed using acquisition times of 30 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes. Three readers independently assessed image quality for each reconstruction using 1-5 scale (1=non-diagnostic; 5=excellent quality). One reader measured SUVmax for up to 6 lesions per patient. Two readers independently assessed lesion conspicuity using 1-3 scale (1=not visualized; 3=definitely visualized). Results: Mean image quality across readers at 30 seconds, 1 minutes, 2 minutes, 3 minutes, and 4 minutes was, for 68Ga-RM2 PET/MRI, 1.0±0.2 to 1.7±0.7, 2.0±0.3 to 2.6±0.8, 3.1±0.5 to 3.9±0.8, 4.6±0.6 to 4.7±0.6, and 4.8±0.4 to 4.8±0.5, respectively, and for 68Ga-PSMA11 PET/MRI was 1.2±0.4 to 1.8±0.6, 2.2±0.4 to 2.8±0.7, 3.6±0.6 to 4.1±0.8, 4.8±0.4 to 4.9±0.4, and 4.9±0.3 to 5.0±0.2, respectively. Mean lesion SUVmax for 68Ga-RM2 PET/MRI was 11.1±12.4, 10.2±11.7, 9.6±11.3, 9.5±11.6, and 9.4±11.6, respectively, and for 68Ga-PSMA11 PET/MRI was 14.7±8.2, 12.9±7.4, 12.1±7.8, 11.7±7.9, and 11.6±7.9, respectively. Mean lesion conspicuity (reader 1/reader 2) was, for 68Ga-RM2 PET/MRI, 2.4±0.5/2.7±0.5, 2.9±0.3/2.9±0.3, 3.0±0.0/3.0±0.0, 3.0±0.0/3.0±0.0, and 3.0±0.0/3.0±0.0, respectively, and for 68Ga-PSMA11 PET/MRI was 2.6±0.5/2.8±0.4, 3.0±0.2/2.9±0.3, 3.0±0.1/3.0±0.2, 3.0±0.0/3.0±0.0, and 3.0±0.0/3.0±0.0, respectively. Conclusion: Our data support routine 3 minute acquisitions, which provided very similar results as 4 minute acquisitions. Two minute acquisition, though somewhat lowering quality, provided acceptable performance and warrants consideration. Clinical Impact: When evaluating PC using modern PET/MRI equipment, time per bed position may be reduced compared with historically used times.

    View details for DOI 10.2214/AJR.21.25961

    View details for PubMedID 34406051

  • A Pilot Study of68Ga-PSMA11 PET/MRI and68GaRM2 PET/MRI for Biopsy Guidance in Patients with Suspected Prostate Cancer Duan, H., Ferri, V., Ghanouni, P., Daniel, B., Hatami, N., Davidzon, G., Aparici, C., Moradi, F., Thong, A., Sonn, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2021
  • Biodistribution and Safety of F-18-FP-R(0)1-MG-F2 Knottin PET Tracer in Patients with Pancreatic Cancer Nakamoto, R., Duan, H., Ferri, V., Hatami, N., Goel, M., Kimura, R., Wardak, M., Haywood, T., Shen, B., Park, W., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2021
  • Pilot Comparison of F-18-FP-R01-MG-F2 and F-18-FDG PET in Patients with Pancreatic Cancer Nakamoto, R., Duan, H., Ferri, V., Hatami, N., Goel, M., Kimura, R., Wardak, M., Haywood, T., Shen, B., Park, W., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2021
  • PSMA- and GRPR-targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Baratto, L., Song, H., Duan, H., Hatami, N., Bagshaw, H., Buyyounouski, M., Hancock, S., Shah, S. A., Srinivas, S., Swift, P., Moradi, F., Davidzon, G. A., Iagaru, A. 2021

    Abstract

    Rationale: Novel radiopharmaceuticals for positron emission tomography (PET) are evaluated for the diagnosis of biochemically recurrent prostate cancer (BCR PC). Here, we compare the gastrin releasing peptide receptors (GRPR) - targeting 68Ga-RM2 with the prostate specific membrane antigen (PSMA) - targeting 68Ga-PSMA11 and 18F-DCFPyL. Methods: Fifty patients had both 68Ga-RM2 PET/MRI and 68Ga-PSMA11 PET/CT (n = 23) or 18F-DCFPyL PET/CT (n = 27) at an interval ranging from 1 to 60 days (mean±SD: 15.8±17.7). Maximum standardized uptake values (SUVmax) were collected for all lesions. Results: RM2 PET was positive in 35 and negative in 15 of the 50 patients. PSMA PET was positive in 37 and negative in 13 of the 50 patients. Both scans detected 70 lesions in 32 patients. Forty-three lesions in 18 patients were identified only on one scan: 68Ga-RM2 detected 7 more lesions in 4 patients, while PSMA detected 36 more lesions in 13 patients. Conclusion: 68Ga-RM2 remains a valuable radiopharmaceutical even when compared with the more widely used 68Ga-PSMA11/18F-DCFPyL in the evaluation of BCR PC. Larger studies are needed to verify that identifying patients for whom these two classes of radiopharmaceuticals are complementary may ultimately allow for personalized medicine.

    View details for DOI 10.2967/jnumed.120.259630

    View details for PubMedID 33674398

  • High quality imaging and dosimetry for yttrium-90 (90Y) liver radioembolization using a SiPM-based PET/CT scanner. European journal of nuclear medicine and molecular imaging Duan, H., Khalaf, M. H., Ferri, V., Baratto, L., Srinivas, S. M., Sze, D. Y., Iagaru, A. 2021

    Abstract

    PURPOSE: Transarterial radioembolization (TARE) with yttrium-90 (90Y) microspheres is a liver-directed treatment for primary and secondary hepatic malignancies. Personalized dosimetry aims for maximum treatment effect and reduced toxicity. We aimed to compare pre-treatment voxel-based dosimetry from 99mTc macroaggregated albumin (MAA) SPECT/CT with post-treatment 90Y PET/CT for absorbed dose values, and to evaluate image quality of 90Y SiPM-based PET/CT.METHODS: Forty-two patients (28 men, 14 women, mean age: 67 ± 11 years) with advanced hepatic malignancies were prospectively enrolled. Twenty patients were treated with glass and 22 with resin microspheres. Radiation absorbed doses from planning 99mTc-MAA SPECT/CT and post-therapy 90Y PET/CT were assessed. 90Y PET/CT images were acquired for 20 min and reconstructed to produce 5-, 10-, 15-, and 20-min datasets, then evaluated using the 5-point Likert scale.RESULTS: The mean administered activity was 3.44 ± 1.5 GBq for glass and 1.62 ± 0.7 GBq for resin microspheres. The mean tumor absorbed doses calculated from 99mTc-MAA SPECT/CT and 90Y PET/CT were 175.69 ± 113.76 Gy and 193.58 ± 111.09 Gy (P = 0.61), respectively for glass microspheres; they were 60.18 ± 42.20 Gy and 70.98 ± 49.65 Gy (P = 0.37), respectively for resin microspheres. The mean normal liver absorbed doses from 99mTc-MAA SPECT/CT and 90Y PET/CT were 32.70 ± 22.25 Gy and 30.62 ± 20.09 Gy (P = 0.77), respectively for glass microspheres; they were 18.33 ± 11.08 Gy and 24.32 ± 15.58 Gy (P = 0.17), respectively for resin microspheres. Image quality of 90Y PET/CT at 5-, 10-, 15-, and 20-min scan time showed a Likert score of 3.6 ± 0.54, 4.57 ± 0.58, 4.84 ± 0.37, and 4.9 ± 0.3, respectively.CONCLUSIONS: 99mTc-MAA SPECT/CT demonstrated great accuracy for treatment planning dosimetry. SiPM-based PET/CT scanner showed good image quality at 10-min scan time, acquired in one bed position. A PET/CT scan time of 5 min showed acceptable image quality and suffices for dosimetry and treatment verification. This allows for inclusion of 90Y PET/CT in busy routine clinical workflows. Studies with larger patient cohorts are needed to confirm these findings.

    View details for DOI 10.1007/s00259-021-05188-4

    View details for PubMedID 33443618

  • Pulmonary large cell neuroendocrine carcinoma (LCNEC) with confirmed liver metastases negative on 18F-FDG and 68Ga-DOTATATE PET. Radiology case reports Ninatti, G., Duan, H., Ferri, V., Martin, B. A., Aparici, C. M. 2020; 15 (12): 2698–2700

    Abstract

    Lung neuroendocrine neoplasms (NENs) encompass the low-, intermediate-, and high-grade entities. Differentiated NENs overexpress somatostatin receptors, which are targeted by 68Ga-DOTA-conjugated peptides in molecular imaging with positron emission tomography. Less differentiated NENs may have lost their expression of somatostatin receptors and thus show lower uptake of 68Ga-DOTA-peptides; however, these tumors express GLUT-1 and can be imaged with (18)F-fluordeoxyglucose (FDG). We report the case of a 72-year-old patient with a poorly differentiated, high grade lung NEN, which was 18F-FDG-positive at initial diagnosis. After treatment and remission, the patient had histologically confirmed relapse in the liver. Interestingly, these hepatic metastases did not demonstrated radiopharmaceutical uptake at neither 18F-FDG nor 68Ga-DOTATATE positron emission tomography/computed tomography.

    View details for DOI 10.1016/j.radcr.2020.10.023

    View details for PubMedID 33117470

  • A prospective study of Ga-68-RM2 PET/MRI in patients with biochemically recurrent prostate cancer and negative conventional imaging. Baratto, L., Song, H., Duan, H., Aparici, C., Davidzon, G., Moradi, F., Srinivas, S., Iagaru, A. LIPPINCOTT WILLIAMS & WILKINS. 2020
  • Prospective evaluation of F-18-DCFPyL PET/CT in biochemically recurrent prostate cancer: Analysis of lesion localization and distribution. Song, H., Duan, H., Harrison, C., Guja, K., Hatami, N., Franc, B., Moradi, F., Aparici, C., Davidzon, G., Srinivas, S., Iagaru, A. AMER SOC CLINICAL ONCOLOGY. 2020
  • Peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors (NET): A two-year single institution experience Duan, H., Ninatti, G., Girod, B., Ferri, V., Guja, K., Song, H., Kunz, P., Fisher, G., Iagaru, A., Aparici, C. SOC NUCLEAR MEDICINE INC. 2020
  • A pilot study of F-18-FSPG SiPM-based PET/CT in patients referred for exclusion of active cardiac sarcoidosis and negative or non-diagnostic F-18-FDG PET/CT Duan, H., Hatami, N., Baratto, L., Davidzon, G., Aparici, C., Gambhir, S., Koglin, N., Witteles, R., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2020
  • Ga-68-RM2 PET/CT in Patients with Newly Diagnosed Intermediate- or High-Risk Prostate Cancer Baratto, L., Duan, H., Hatami, N., Aparici, C., Davidzon, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2020
  • Determining optimal uptake time for Ga-68-labeled radiopharmaceuticals targeting gastrin-releasing peptide receptors with a modified NEMA phantom. Ramos, K., Ferri, V., Baratto, L., Duan, H., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2020
  • Ga-68-PSMA-11 PET/MR Imaging before prostatectomy: correlation with surgical pathology and two-year follow up Moradi, F., Baratto, L., Duan, H., Hatami, N., Davidzon, G., Sonn, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2020
  • PSMA-and GRPR-targeted PET: Preliminary Results in Patients with Biochemically Recurrent Prostate Cancer Baratto, L., Duan, H., Hatami, N., Song, H., Davidzon, G., Franc, B., Aparici, C., Moradi, F., Nguyen, J., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2020
  • Toxicity identification and evaluation of peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors (NETs) Duan, H., Girod, B., Ninatti, G., Ferri, V., Kunz, P., Fisher, G., Moradi, F., Davidzon, G., Franc, B., Iagaru, A., Aparici, C. SOC NUCLEAR MEDICINE INC. 2020
  • INTERIM ANALYSIS RESULTS OF A PROSPECTIVE STUDY OF (68)GA-RM2 PET/MRI IN PATIENTS WITH BIOCHEMICALLY RECURRENT PROSTATE CANCER AND NEGATIVE CONVENTIONAL IMAGING Baratto, L., Song, H., Duan, H., Aparici, C., Hatami, N., Davidzon, G., Moradi, F., Iagaru, A. LIPPINCOTT WILLIAMS & WILKINS. 2020: E1118
  • Single institution experience with peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET) Duan, H., Ninatti, G., Girod, B., Ferri, V., Kunz, P. L., Fisher, G. A., Moradi, F., Davidzon, G., Franc, B., Iagaru, A., Mari, C. AMER SOC CLINICAL ONCOLOGY. 2020
  • Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Baratto, L. n., Duan, H. n., Maecke, H. R., Iagaru, A. n. 2020

    Abstract

    Targeting tumor-expressed receptors using selective molecules for diagnostic, therapeutic or both diagnostic and therapeutic (theragnostic) purposes is a promising approach in oncological applications. Such approaches have increased significantly over the past decade. Peptides such as gastrin-releasing peptide receptors (GRPR) targeting radiopharmaceuticals are small molecules with fast blood clearance and urinary excretion. They demonstrate good tissue diffusion, low immunogenicity, and highly selective binding to their target cell-surface receptors. They are also easily produced. GRPR, part of the bombesin (BBN) family, are overexpressed in many tumors, including breast and prostate cancer, and therefore represent an attractive target for future development.

    View details for DOI 10.2967/jnumed.119.234971

    View details for PubMedID 32060215

  • The Effect of Various β Values on Image Quality and Semiquantitative Measurements in 68Ga-RM2 and 68Ga-PSMA-11 PET/MRI Images Reconstructed With a Block Sequential Regularized Expectation Maximization Algorithm. Clinical nuclear medicine Baratto, L. n., Duan, H. n., Ferri, V. n., Khalighi, M. n., Iagaru, A. n. 2020

    Abstract

    To compare the block sequential regularized expectation maximization (BSREM) algorithm with the ordered subsets expectation maximization (OSEM) algorithm and to evaluate how different penalty factors (b values) influence image quality and SUV measurements.We analyzed data from 78 prostate cancer patients who underwent Ga-RM2 (n = 42) or Ga-prostate-specific membrane antigen (PSMA)-11 (n = 36) PET/MRI. The raw PET data were retrospectively reconstructed using both time-of-flight (TOF)-BSREM with b values of 250, 350, 500, 750, and 1000 and TOF-OSEM. Each reconstruction was reviewed independently by 3 nuclear medicine physicians and scored qualitatively using a Likert scale (1 = poor, 5 = excellent quality). SUV measurements were analyzed as well.Fifty-seven lesions were detected (21 on Ga-RM2 and 36 on Ga-PSMA-11 PET/MRI); SUVmax decreased with the increase of β values for both tracers. Background noise (SUVsd) decreased with increasing of β values for both tracers. The mean ± SD scores for Ga-RM2 PET images were 2.4 ± 0.5 for b = 250 reconstructions, 3.2 ± 0.6 for b = 350, 4 ± 0.6 for b = 500, 4.5 ± 0.5 for b = 750, 4.4 ± 0.7 for b = 1000, and 3.4 ± 0.6 for TOF-OSEM. The mean ± SD scores for Ga-PSMA-11 PET images were 3.2 ± 0.8 for b = 250 reconstructions, 4.1 ± 0.8 for b = 350, 4.7 ± 0.6 for b = 500, 4.8 ± 0.4 for b = 750, 4.7 ± 0.6 for b = 1000, and 3.8 ± 0.5 for TOF-OSEM.Time-of-flight-BSREM algorithm improves image quality. Different b values should be used for different Ga-labeled radiopharmaceuticals such as those targeting GRPR and PSMA receptors. Once selected, the same b value should be consistently used because SUVmax measurements differ with different b values.

    View details for DOI 10.1097/RLU.0000000000003075

    View details for PubMedID 32433170

  • Prospective Evaluation in an Academic Center of 18F-DCFPyL PET/CT in Biochemically Recurrent Prostate Cancer: A Focus on Localizing Disease and Changes in Management. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Song, H., Harrison, C., Duan, H., Guja, K., Hatami, N., Franc, B., Moradi, F., Mari Aparici, C., Davidzon, G., Iagaru, A. 2019

    Abstract

    18F-DCFPyL is a promising PET radiopharmaceutical targeting prostate specific membrane antigen (PSMA). We present our experience in this single academic center prospective study evaluating the positivity rate of 18F-DCFPyL PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). Methods: We prospectively enrolled 72 men (52-91 years old, mean±SD: 71.5±7.2) with BCR after primary definitive treatment with prostatectomy (n = 42) or radiotherapy (n = 30). The presence of lesions compatible with PC was evaluated by two independent readers. Fifty-nine patients had concurrent scans with at least one other conventional scan: bone scan (24), CT (21), MR (20), 18F-Fluciclovine PET/CT (18) and/or 18F-NaF PET (14). Findings from 18F-DCFPyL PET/CT were compared with those from other modalities. Impact on patient management based on 18F-DCFPyL PET/CT was recorded from clinical chart review. Results: 18F-DCFPyL PET/CT had an overall positivity rate of 85%, which increased with higher prostate specific antigen (PSA) levels (ng/mL): 50% (PSA<0.5), 69% (0.5≤PSA<1), 100% (1≤PSA<2), 91% (2≤PSA<5) and 96% (PSA≥5), respectively. 18F-DCFPyL PET detected more lesions than conventional imaging. For anatomic imaging, 20/41 (49%) CT/MRI had congruent findings with 18F-DCFPyL, while 18F-DCFPyL PET was positive in 17/41 (41%) cases with negative CT/MRI. For bone imaging, 26/38 (68%) bone scan/18F-NaF PET were congruent with 18F-DCFPyL PET, while 18F-DCFPyL PET localized bone lesions in 8/38 (21%) patients with negative bone scan/18F-NaF PET. In 8/18 (44%) patients, 18F-Fluciclovine PET had located the same lesions as the 18F-DCFPyL PET, while 5/18 (28%) patients with negative 18F-Fluciclovine had positive 18F-DCFPyL PET findings and 1/18 (6%) patient with negative 18F-DCFPyL had uptake in the prostate bed on 18F-Fluciclovine PET. In the remaining 4/18 (22%) patients, 18F-DCFPyL and 18F-Fluciclovine scans showed different lesions. Lastly, 43/72 (60%) patients had treatment changes after 18F-DCFPyL PET and, most noticeably, 17 of these patients (24% total) had lesion localization only on 18F-DCFPyL PET, despite negative conventional imaging. Conclusion: 18F-DCFPyL PET/CT is a promising diagnostic tool in the work-up of biochemically recurrent prostate cancer given the high positivity rate as compared to FDA-approved currently available imaging modalities and its impact on clinical management in 60% of patients.

    View details for DOI 10.2967/jnumed.119.231654

    View details for PubMedID 31628216

  • Physiological 68Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. European journal of nuclear medicine and molecular imaging Baratto, L., Duan, H., Laudicella, R., Toriihara, A., Hatami, N., Ferri, V., Iagaru, A. 2019

    Abstract

    AIM: 68Ga-RM2 is a bombesin (BBN) analog that targets the gastrin releasing peptide receptors (GRPR) overexpressed in many cancer cells, including prostate cancer (PC). It has been reported to successfully detect primary and recurrent PC. Here, we describe the distribution and range of physiological uptake of 68Ga-RM2 in 95 patients with biochemically recurrent (BCR) PC.MATERIALS AND METHODS: Ninety-five participants had simultaneous PET/MRI for BCR PC and were prospectively enrolled in this study. Maximum standardized uptake value (SUVmax) and mean standardized uptake value (SUVmean) were measured in 24 normal anatomical structures for each participant. Three readers evaluated the images independently. Uptake in various normal tissues was classified into 4 different categories: no significant uptake if SUVmean was less than SUVmean of the aortic arch (AA); mild if SUVmean was less or equal to 2.5, but higher than SUVmean of the AA; moderate if SUVmean was higher than 2.5, but less or equal to 5; intense if SUVmean was higher than 5.RESULTS: The most intense uptake was observed in the urinary bladder, due to excretion of the radiotracer. No significant uptake was seen in the brain, salivary glands, lungs, myocardium, skeleton, muscles, and fat. Liver, spleen, and adrenal glands had mostly no significant uptake; the gastrointestinal tract had intense physiological uptake, with pancreas being the organ with the highest SUVmax measurements (average SUVmax 64.91). Mild and moderate uptake was measured in the esophagus (average SUVmax 3.99), while the stomach wall, duodenum, and rectum had mild uptake (average SUVmax 2.49, 3.42, and 3.58, respectively).CONCLUSIONS: 68Ga-RM2 has been mostly evaluated for PC detection, but it can be used for other tumors overexpressing GRPR such as breast cancer. This atlas of normal biodistribution and SUV measurements in healthy tissues will help physicians distinguish between physiological vs. pathological uptake, as well as potentially assist with planning future studies using GRPR targeting radiopharmaceuticals.

    View details for DOI 10.1007/s00259-019-04503-4

    View details for PubMedID 31478089

  • F-18-FPPRGD(2) PET/CT in patients with metastatic renal cell cancer EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Toriihara, A., Duan, H., Thompson, H. M., Park, S., Hatami, N., Baratto, L., Fan, A. C., Iagaru, A. 2019; 46 (7): 1518–23
  • Preliminary Results of a Prospective Study of Ga-68-RM2 PET/MRI for Detection of Recurrent Prostate Cancer in Patients with Negative Conventional Imaging Baratto, L., Duan, H., Harrison, C., Hatami, N., Aparici, C., Davidzon, G., Yohannan, T., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Prospective evaluation of Ga-68-RM2 PET/MRI and Ga-68-PSMA11 PET/CT in patients with biochemical recurrence of prostate cancer Baratto, L., Duan, H., Hatami, N., Toriihara, A., Song, H., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Comparison of three interpretation criteria of Ga-68-PS A PET based on in er and intra-reader agreement Toriihara, A., Nobashi, T., Baratto, L., Park, S., Hatami, N., Duan, H., Aparici, C., Davidzon, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Prospective Comparison of F-18-DCFPyL PET/CT with F-18-NaF PET/CT for Detection of Skeletal Metastases in Biochemically Recurrent Prostate Cancer Duan, H., Song, H., Baratto, L., Khalaf, M., Hatami, N., Franc, B., Moradi, F., Davidzon, G., Aparici, C., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Clinical Follow-Up after Imaging and Dosimetry for Yttrium-90 (Y-90) Liver Radioembolization Using a SiPM-Based PET/CT Scanner Duan, H., Khalaf, M., Baratto, L., Srinivas, S., Sze, D., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • 18F-FPPRGD2 PET/CT in patients with metastatic renal cell cancer. European journal of nuclear medicine and molecular imaging Toriihara, A., Duan, H., Thompson, H. M., Park, S., Hatami, N., Baratto, L., Fan, A. C., Iagaru, A. 2019

    Abstract

    PURPOSE: The usefulness of positron emission tomography/computed tomography (PET/CT) using (18F)-2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid peptide [PEG3-E{c(RGDyk)}2] (18F-FPPRGD2) in patients with metastatic renal cell cancer (mRCC) has not been evaluated; therefore, we were prompted to conduct this pilot study.METHODS: Seven patients with mRCC were enrolled in this prospective study. 18F-FPPRGD2 and 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) PET/CT images were evaluated in a per-lesion analysis. Maximum standardized uptake value (SUVmax) and tumor-to-background ratio (T/B) were measured for all detected lesions, both before and after starting antiangiogenic therapy.RESULTS: Sixty lesions in total were detected in this cohort. SUVmax from 18F-FPPRGD2 PET/CT was lower than that from 18F-FDG PET/CT (4.4±2.9 vs 7.8±5.6, P<0.001). Both SUVmax and T/B from 18F-FPPRGD2 PET/CT decreased after starting antiangiogenic therapy (SUVmax, 4.2±3.2 vs 2.6±1.4, P=0.003; T/B, 3.7±3.2 vs 1.5±0.8, P<0.001). Average changes in SUVmax and T/B were-29.3±23.6% and-48.1±28.3%, respectively.CONCLUSIONS: 18F-FPPRGD2 PET/CT may be an useful tool for monitoring early response to antiangiogenic therapy in patients with mRCC. These preliminary results need to be confirmed in larger cohorts.

    View details for PubMedID 30850872

  • Comparison of three interpretation criteria of 68Ga-PSMA11 PET based on inter- and intra-reader agreement. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Toriihara, A. n., Nobashi, T. n., Baratto, L. n., Duan, H. n., Moradi, F. n., Park, S. n., Hatami, N. n., Aparici, C. n., Davidzon, G. n., Iagaru, A. n. 2019

    Abstract

    Positron emission tomography (PET) using radiolabeled prostate specific membrane antigen (PSMA) is now more and more widely adopted as a valuable tool to evaluate patients with prostate cancer (PC). Recently, three different criteria for interpretation of PSMA PET were published: European Association of Nuclear Medicine (EANM) criteria, prostate cancer molecular imaging standardized evaluation (PROMISE) criteria, and PSMA-reporting and data system (PSMA-RADS). We compared these three criteria in terms of inter-reader, intra-reader, and inter-criteria agreement. Methods: Data from 104 patients prospectively enrolled in research protocols at our institution were retrospectively reviewed. The cohort consisted of two groups: 47 patients (mean age: 64.2 years old) who underwent Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED-CC)] (68Ga-PSMA11) PET/magnetic resonance imaging (MRI) for initial staging of biopsy-proven intermediate- or high-risk PC, and 57 patients (mean age: 70.5 years old) who underwent 68Ga-PSMA11 PET/computed tomography (CT) due to biochemically recurrent (BCR) PC. Three nuclear medicine physicians independently evaluated all 68Ga-PSMA11 PET/MRI and PET/CT studies according to the three interpretation criteria. Two of them reevaluated all studies 6 months later in the same manner and blinded to the initial reading. Gwet's AC was calculated to evaluate inter- and intra-reader, and inter-criteria agreement based on the following sites: local lesion (primary tumor or prostate bed after radical prostatectomy), lymph node metastases, and other metastases. Results: In the PET/MRI group, inter-reader, intra-reader, and inter-criteria agreements were substantial to almost perfect in any sites according to all of the three criteria. In the PET/CT group, inter-reader agreement was substantial to almost perfect except judgement of distant metastases based on PSMA-RADS (Gwet's AC = 0.57, moderate agreement), in which the most frequent cause of disagreement was lung nodules. Intra-reader agreements were substantial to almost perfect in any sites according to all of the three criteria. Inter-criteria agreements of each site were also substantial to almost perfect. Conclusion: Although the three published criteria have good inter-reader and intra-reader reproducibility in evaluating 68Ga-PSMA11 PET, there are factors bringing inter-reader disagreement. This indicates that further work is needed to address the issue.

    View details for DOI 10.2967/jnumed.119.232504

    View details for PubMedID 31562226

  • The Role of PET/CT in the Imaging of Pancreatic Neoplasms. Seminars in ultrasound, CT, and MR Duan, H. n., Baratto, L. n., Iagaru, A. n. 2019; 40 (6): 500–508

    Abstract

    Pancreas cancer is a complex disease and its prognosis is related to the origin of the tumor cell as well as the stage of disease at the time of diagnosis. Pancreatic adenocarcinomas derive from the exocrine pancreas and are the fourth leading cause of cancer-related deaths in the United States, while well-differentiated pancreatic neuroendocrine tumors (pNETs) derived from the endocrine part of the pancreas are rare and characterized by a slow growth and good life expectancy. Surgery is the only curative treatment approach, and an accurate assessment of resectability is of paramount importance in order to avoid futile procedures. The role of molecular imaging with positron emission tomography and computed tomography ranges from indispensable for pNETs to controversial for certain scenarios in pancreatic adenocarcinomas. This review article aims to overview molecular pancreatic imaging.

    View details for DOI 10.1053/j.sult.2019.04.006

    View details for PubMedID 31806148