Professional Education

  • Doctor of Medicine, Universitat Wien (2007)

All Publications

  • Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Baratto, L., Duan, H., Maecke, H. R., Iagaru, A. 2020


    Targeting tumor-expressed receptors using selective molecules for diagnostic, therapeutic or both diagnostic and therapeutic (theragnostic) purposes is a promising approach in oncological applications. Such approaches have increased significantly over the past decade. Peptides such as gastrin-releasing peptide receptors (GRPR) targeting radiopharmaceuticals are small molecules with fast blood clearance and urinary excretion. They demonstrate good tissue diffusion, low immunogenicity, and highly selective binding to their target cell-surface receptors. They are also easily produced. GRPR, part of the bombesin (BBN) family, are overexpressed in many tumors, including breast and prostate cancer, and therefore represent an attractive target for future development.

    View details for DOI 10.2967/jnumed.119.234971

    View details for PubMedID 32060215

  • The Effect of Various β Values on Image Quality and Semiquantitative Measurements in 68Ga-RM2 and 68Ga-PSMA-11 PET/MRI Images Reconstructed With a Block Sequential Regularized Expectation Maximization Algorithm. Clinical nuclear medicine Baratto, L., Duan, H., Ferri, V., Khalighi, M., Iagaru, A. 2020


    To compare the block sequential regularized expectation maximization (BSREM) algorithm with the ordered subsets expectation maximization (OSEM) algorithm and to evaluate how different penalty factors (b values) influence image quality and SUV measurements.We analyzed data from 78 prostate cancer patients who underwent Ga-RM2 (n = 42) or Ga-prostate-specific membrane antigen (PSMA)-11 (n = 36) PET/MRI. The raw PET data were retrospectively reconstructed using both time-of-flight (TOF)-BSREM with b values of 250, 350, 500, 750, and 1000 and TOF-OSEM. Each reconstruction was reviewed independently by 3 nuclear medicine physicians and scored qualitatively using a Likert scale (1 = poor, 5 = excellent quality). SUV measurements were analyzed as well.Fifty-seven lesions were detected (21 on Ga-RM2 and 36 on Ga-PSMA-11 PET/MRI); SUVmax decreased with the increase of β values for both tracers. Background noise (SUVsd) decreased with increasing of β values for both tracers. The mean ± SD scores for Ga-RM2 PET images were 2.4 ± 0.5 for b = 250 reconstructions, 3.2 ± 0.6 for b = 350, 4 ± 0.6 for b = 500, 4.5 ± 0.5 for b = 750, 4.4 ± 0.7 for b = 1000, and 3.4 ± 0.6 for TOF-OSEM. The mean ± SD scores for Ga-PSMA-11 PET images were 3.2 ± 0.8 for b = 250 reconstructions, 4.1 ± 0.8 for b = 350, 4.7 ± 0.6 for b = 500, 4.8 ± 0.4 for b = 750, 4.7 ± 0.6 for b = 1000, and 3.8 ± 0.5 for TOF-OSEM.Time-of-flight-BSREM algorithm improves image quality. Different b values should be used for different Ga-labeled radiopharmaceuticals such as those targeting GRPR and PSMA receptors. Once selected, the same b value should be consistently used because SUVmax measurements differ with different b values.

    View details for DOI 10.1097/RLU.0000000000003075

    View details for PubMedID 32433170

  • Prospective Evaluation in an Academic Center of 18F-DCFPyL PET/CT in Biochemically Recurrent Prostate Cancer: A Focus on Localizing Disease and Changes in Management. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Song, H., Harrison, C., Duan, H., Guja, K., Hatami, N., Franc, B., Moradi, F., Mari Aparici, C., Davidzon, G., Iagaru, A. 2019


    18F-DCFPyL is a promising PET radiopharmaceutical targeting prostate specific membrane antigen (PSMA). We present our experience in this single academic center prospective study evaluating the positivity rate of 18F-DCFPyL PET/CT in patients with biochemical recurrence (BCR) of prostate cancer (PC). Methods: We prospectively enrolled 72 men (52-91 years old, mean±SD: 71.5±7.2) with BCR after primary definitive treatment with prostatectomy (n = 42) or radiotherapy (n = 30). The presence of lesions compatible with PC was evaluated by two independent readers. Fifty-nine patients had concurrent scans with at least one other conventional scan: bone scan (24), CT (21), MR (20), 18F-Fluciclovine PET/CT (18) and/or 18F-NaF PET (14). Findings from 18F-DCFPyL PET/CT were compared with those from other modalities. Impact on patient management based on 18F-DCFPyL PET/CT was recorded from clinical chart review. Results: 18F-DCFPyL PET/CT had an overall positivity rate of 85%, which increased with higher prostate specific antigen (PSA) levels (ng/mL): 50% (PSA<0.5), 69% (0.5≤PSA<1), 100% (1≤PSA<2), 91% (2≤PSA<5) and 96% (PSA≥5), respectively. 18F-DCFPyL PET detected more lesions than conventional imaging. For anatomic imaging, 20/41 (49%) CT/MRI had congruent findings with 18F-DCFPyL, while 18F-DCFPyL PET was positive in 17/41 (41%) cases with negative CT/MRI. For bone imaging, 26/38 (68%) bone scan/18F-NaF PET were congruent with 18F-DCFPyL PET, while 18F-DCFPyL PET localized bone lesions in 8/38 (21%) patients with negative bone scan/18F-NaF PET. In 8/18 (44%) patients, 18F-Fluciclovine PET had located the same lesions as the 18F-DCFPyL PET, while 5/18 (28%) patients with negative 18F-Fluciclovine had positive 18F-DCFPyL PET findings and 1/18 (6%) patient with negative 18F-DCFPyL had uptake in the prostate bed on 18F-Fluciclovine PET. In the remaining 4/18 (22%) patients, 18F-DCFPyL and 18F-Fluciclovine scans showed different lesions. Lastly, 43/72 (60%) patients had treatment changes after 18F-DCFPyL PET and, most noticeably, 17 of these patients (24% total) had lesion localization only on 18F-DCFPyL PET, despite negative conventional imaging. Conclusion: 18F-DCFPyL PET/CT is a promising diagnostic tool in the work-up of biochemically recurrent prostate cancer given the high positivity rate as compared to FDA-approved currently available imaging modalities and its impact on clinical management in 60% of patients.

    View details for DOI 10.2967/jnumed.119.231654

    View details for PubMedID 31628216

  • Physiological 68Ga-RM2 uptake in patients with biochemically recurrent prostate cancer: an atlas of semi-quantitative measurements. European journal of nuclear medicine and molecular imaging Baratto, L., Duan, H., Laudicella, R., Toriihara, A., Hatami, N., Ferri, V., Iagaru, A. 2019


    AIM: 68Ga-RM2 is a bombesin (BBN) analog that targets the gastrin releasing peptide receptors (GRPR) overexpressed in many cancer cells, including prostate cancer (PC). It has been reported to successfully detect primary and recurrent PC. Here, we describe the distribution and range of physiological uptake of 68Ga-RM2 in 95 patients with biochemically recurrent (BCR) PC.MATERIALS AND METHODS: Ninety-five participants had simultaneous PET/MRI for BCR PC and were prospectively enrolled in this study. Maximum standardized uptake value (SUVmax) and mean standardized uptake value (SUVmean) were measured in 24 normal anatomical structures for each participant. Three readers evaluated the images independently. Uptake in various normal tissues was classified into 4 different categories: no significant uptake if SUVmean was less than SUVmean of the aortic arch (AA); mild if SUVmean was less or equal to 2.5, but higher than SUVmean of the AA; moderate if SUVmean was higher than 2.5, but less or equal to 5; intense if SUVmean was higher than 5.RESULTS: The most intense uptake was observed in the urinary bladder, due to excretion of the radiotracer. No significant uptake was seen in the brain, salivary glands, lungs, myocardium, skeleton, muscles, and fat. Liver, spleen, and adrenal glands had mostly no significant uptake; the gastrointestinal tract had intense physiological uptake, with pancreas being the organ with the highest SUVmax measurements (average SUVmax 64.91). Mild and moderate uptake was measured in the esophagus (average SUVmax 3.99), while the stomach wall, duodenum, and rectum had mild uptake (average SUVmax 2.49, 3.42, and 3.58, respectively).CONCLUSIONS: 68Ga-RM2 has been mostly evaluated for PC detection, but it can be used for other tumors overexpressing GRPR such as breast cancer. This atlas of normal biodistribution and SUV measurements in healthy tissues will help physicians distinguish between physiological vs. pathological uptake, as well as potentially assist with planning future studies using GRPR targeting radiopharmaceuticals.

    View details for DOI 10.1007/s00259-019-04503-4

    View details for PubMedID 31478089

  • F-18-FPPRGD(2) PET/CT in patients with metastatic renal cell cancer EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Toriihara, A., Duan, H., Thompson, H. M., Park, S., Hatami, N., Baratto, L., Fan, A. C., Iagaru, A. 2019; 46 (7): 1518–23
  • Preliminary Results of a Prospective Study of Ga-68-RM2 PET/MRI for Detection of Recurrent Prostate Cancer in Patients with Negative Conventional Imaging Baratto, L., Duan, H., Harrison, C., Hatami, N., Aparici, C., Davidzon, G., Yohannan, T., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Clinical Follow-Up after Imaging and Dosimetry for Yttrium-90 (Y-90) Liver Radioembolization Using a SiPM-Based PET/CT Scanner Duan, H., Khalaf, M., Baratto, L., Srinivas, S., Sze, D., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Prospective evaluation of Ga-68-RM2 PET/MRI and Ga-68-PSMA11 PET/CT in patients with biochemical recurrence of prostate cancer Baratto, L., Duan, H., Hatami, N., Toriihara, A., Song, H., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Comparison of three interpretation criteria of Ga-68-PS A PET based on in er and intra-reader agreement Toriihara, A., Nobashi, T., Baratto, L., Park, S., Hatami, N., Duan, H., Aparici, C., Davidzon, G., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • Prospective Comparison of F-18-DCFPyL PET/CT with F-18-NaF PET/CT for Detection of Skeletal Metastases in Biochemically Recurrent Prostate Cancer Duan, H., Song, H., Baratto, L., Khalaf, M., Hatami, N., Franc, B., Moradi, F., Davidzon, G., Aparici, C., Iagaru, A. SOC NUCLEAR MEDICINE INC. 2019
  • 18F-FPPRGD2 PET/CT in patients with metastatic renal cell cancer. European journal of nuclear medicine and molecular imaging Toriihara, A., Duan, H., Thompson, H. M., Park, S., Hatami, N., Baratto, L., Fan, A. C., Iagaru, A. 2019


    PURPOSE: The usefulness of positron emission tomography/computed tomography (PET/CT) using (18F)-2-fluoropropionyl-labeled PEGylated dimeric arginine-glycine-aspartic acid peptide [PEG3-E{c(RGDyk)}2] (18F-FPPRGD2) in patients with metastatic renal cell cancer (mRCC) has not been evaluated; therefore, we were prompted to conduct this pilot study.METHODS: Seven patients with mRCC were enrolled in this prospective study. 18F-FPPRGD2 and 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) PET/CT images were evaluated in a per-lesion analysis. Maximum standardized uptake value (SUVmax) and tumor-to-background ratio (T/B) were measured for all detected lesions, both before and after starting antiangiogenic therapy.RESULTS: Sixty lesions in total were detected in this cohort. SUVmax from 18F-FPPRGD2 PET/CT was lower than that from 18F-FDG PET/CT (4.4±2.9 vs 7.8±5.6, P<0.001). Both SUVmax and T/B from 18F-FPPRGD2 PET/CT decreased after starting antiangiogenic therapy (SUVmax, 4.2±3.2 vs 2.6±1.4, P=0.003; T/B, 3.7±3.2 vs 1.5±0.8, P<0.001). Average changes in SUVmax and T/B were-29.3±23.6% and-48.1±28.3%, respectively.CONCLUSIONS: 18F-FPPRGD2 PET/CT may be an useful tool for monitoring early response to antiangiogenic therapy in patients with mRCC. These preliminary results need to be confirmed in larger cohorts.

    View details for PubMedID 30850872

  • Comparison of three interpretation criteria of 68Ga-PSMA11 PET based on inter- and intra-reader agreement. Journal of nuclear medicine : official publication, Society of Nuclear Medicine Toriihara, A., Nobashi, T., Baratto, L., Duan, H., Moradi, F., Park, S., Hatami, N., Aparici, C., Davidzon, G., Iagaru, A. 2019


    Positron emission tomography (PET) using radiolabeled prostate specific membrane antigen (PSMA) is now more and more widely adopted as a valuable tool to evaluate patients with prostate cancer (PC). Recently, three different criteria for interpretation of PSMA PET were published: European Association of Nuclear Medicine (EANM) criteria, prostate cancer molecular imaging standardized evaluation (PROMISE) criteria, and PSMA-reporting and data system (PSMA-RADS). We compared these three criteria in terms of inter-reader, intra-reader, and inter-criteria agreement. Methods: Data from 104 patients prospectively enrolled in research protocols at our institution were retrospectively reviewed. The cohort consisted of two groups: 47 patients (mean age: 64.2 years old) who underwent Glu-NH-CO-NH-Lys-(Ahx)-[68Ga(HBED-CC)] (68Ga-PSMA11) PET/magnetic resonance imaging (MRI) for initial staging of biopsy-proven intermediate- or high-risk PC, and 57 patients (mean age: 70.5 years old) who underwent 68Ga-PSMA11 PET/computed tomography (CT) due to biochemically recurrent (BCR) PC. Three nuclear medicine physicians independently evaluated all 68Ga-PSMA11 PET/MRI and PET/CT studies according to the three interpretation criteria. Two of them reevaluated all studies 6 months later in the same manner and blinded to the initial reading. Gwet's AC was calculated to evaluate inter- and intra-reader, and inter-criteria agreement based on the following sites: local lesion (primary tumor or prostate bed after radical prostatectomy), lymph node metastases, and other metastases. Results: In the PET/MRI group, inter-reader, intra-reader, and inter-criteria agreements were substantial to almost perfect in any sites according to all of the three criteria. In the PET/CT group, inter-reader agreement was substantial to almost perfect except judgement of distant metastases based on PSMA-RADS (Gwet's AC = 0.57, moderate agreement), in which the most frequent cause of disagreement was lung nodules. Intra-reader agreements were substantial to almost perfect in any sites according to all of the three criteria. Inter-criteria agreements of each site were also substantial to almost perfect. Conclusion: Although the three published criteria have good inter-reader and intra-reader reproducibility in evaluating 68Ga-PSMA11 PET, there are factors bringing inter-reader disagreement. This indicates that further work is needed to address the issue.

    View details for DOI 10.2967/jnumed.119.232504

    View details for PubMedID 31562226

  • The Role of PET/CT in the Imaging of Pancreatic Neoplasms. Seminars in ultrasound, CT, and MR Duan, H., Baratto, L., Iagaru, A. 2019; 40 (6): 500–508


    Pancreas cancer is a complex disease and its prognosis is related to the origin of the tumor cell as well as the stage of disease at the time of diagnosis. Pancreatic adenocarcinomas derive from the exocrine pancreas and are the fourth leading cause of cancer-related deaths in the United States, while well-differentiated pancreatic neuroendocrine tumors (pNETs) derived from the endocrine part of the pancreas are rare and characterized by a slow growth and good life expectancy. Surgery is the only curative treatment approach, and an accurate assessment of resectability is of paramount importance in order to avoid futile procedures. The role of molecular imaging with positron emission tomography and computed tomography ranges from indispensable for pNETs to controversial for certain scenarios in pancreatic adenocarcinomas. This review article aims to overview molecular pancreatic imaging.

    View details for DOI 10.1053/j.sult.2019.04.006

    View details for PubMedID 31806148