Honors & Awards


  • Stanford Graduate Fellowship 2020-23, Stanford University (05/2020)

Stanford Advisors


All Publications


  • Efficient parametric down-conversion by gain-trapped solitons OPTICA Hamrouni, M., Jankowski, M., Hwang, A. Y., Jornod, N., Mishra, J., Stokowski, H. S., Mckenna, T. P., Langrock, C., Sudmeyer, T., Safavi-Naeini, A., Fejer, M. M. 2024; 11 (3): 315-325
  • Single-mode squeezed-light generation and tomography with an integrated optical parametric oscillator. Science advances Park, T., Stokowski, H., Ansari, V., Gyger, S., Multani, K. K., Celik, O. T., Hwang, A. Y., Dean, D. J., Mayor, F., McKenna, T. P., Fejer, M. M., Safavi-Naeini, A. 2024; 10 (11): eadl1814

    Abstract

    Quantum optical technologies promise advances in sensing, computing, and communication. A key resource is squeezed light, where quantum noise is redistributed between optical quadratures. We introduce a monolithic, chip-scale platform that exploits the χ(2) nonlinearity of a thin-film lithium niobate (TFLN) resonator device to efficiently generate squeezed states of light. Our system integrates all essential components-except for the laser and two detectors-on a single chip with an area of one square centimeter, reducing the size, operational complexity, and power consumption associated with conventional setups. Using the balanced homodyne measurement subsystem that we implemented on the same chip, we measure a squeezing of 0.55 decibels and an anti-squeezing of 1.55 decibels. We use 20 milliwatts of input power to generate the parametric oscillator pump field by using second harmonic generation on the same chip. Our work represents a step toward compact and efficient quantum optical systems posed to leverage the rapid advances in integrated nonlinear and quantum photonics.

    View details for DOI 10.1126/sciadv.adl1814

    View details for PubMedID 38478618

  • Integrated frequency-modulated optical parametric oscillator. Nature Stokowski, H. S., Dean, D. J., Hwang, A. Y., Park, T., Celik, O. T., McKenna, T. P., Jankowski, M., Langrock, C., Ansari, V., Fejer, M. M., Safavi-Naeini, A. H. 2024; 627 (8002): 95-100

    Abstract

    Optical frequency combs have revolutionized precision measurement, time-keeping and molecular spectroscopy1-7. A substantial effort has developed around 'microcombs': integrating comb-generating technologies into compact photonic platforms5,7-9. Current approaches for generating these microcombs involve either the electro-optic10 or Kerr mechanisms11. Despite rapid progress, maintaining high efficiency and wide bandwidth remains challenging. Here we introduce a previously unknown class of microcomb-an integrated device that combines electro-optics and parametric amplification to yield a frequency-modulated optical parametric oscillator (FM-OPO). In contrast to the other solutions, it does not form pulses but maintains operational simplicity and highly efficient pump power use with an output resembling a frequency-modulated laser12. We outline the working principles of our device and demonstrate it by fabricating the complete optical system in thin-film lithium niobate. We measure pump-to-comb internal conversion efficiency exceeding 93% (34% out-coupled) over a nearly flat-top spectral distribution spanning about 200 modes (over 1THz). Compared with an electro-optic comb, the cavity dispersion rather than loss determines the FM-OPO bandwidth, enabling broadband combs with a smaller radio-frequency modulation power. The FM-OPO microcomb offers robust operational dynamics, high efficiency and broad bandwidth, promising compact precision tools for metrology, spectroscopy, telecommunications, sensing and computing.

    View details for DOI 10.1038/s41586-024-07071-2

    View details for PubMedID 38448697

  • Integrated frequency-modulated optical parametric oscillator NATURE Stokowski, H. S., Dean, D. J., Hwang, A. Y., Park, T., Celik, O., McKenna, T. P., Jankowski, M., Langrock, C., Ansari, V., Fejer, M. M., Safavi-Naeini, A. H. 2024; 627 (8002)
  • Efficient Photonic Integration of Diamond Color Centers and Thin-Film Lithium Niobate ACS PHOTONICS Riedel, D., Lee, H., Herrmann, J. F., Grzesik, J., Ansari, V., Borit, J., Stokowski, H. S., Aghaeimeibodi, S., Lu, H., McQuade, P. J., Melosh, N. A., Shen, Z., Safavi-Naeini, A. H., Vuckovic, J. 2023; 10 (12): 4236-4243
  • Mid-infrared spectroscopy with a broadly tunable thin-film lithium niobate optical parametric oscillator OPTICA Hwang, A., Stokowski, H. S., Park, T., Jankowski, M., Mckenna, T. P., Langrock, C., Mishra, J., Ansari, V., Fejer, M. M., Safavi-Naeini, A. H. 2023; 10 (11): 1535-1542
  • Integrated quantum optical phase sensor in thin film lithium niobate. Nature communications Stokowski, H. S., McKenna, T. P., Park, T., Hwang, A. Y., Dean, D. J., Celik, O. T., Ansari, V., Fejer, M. M., Safavi-Naeini, A. H. 2023; 14 (1): 3355

    Abstract

    The quantum noise of light, attributed to the random arrival time of photons from a coherent light source, fundamentally limits optical phase sensors. An engineered source of squeezed states suppresses this noise and allows phase detection sensitivity beyond the quantum noise limit (QNL). We need ways to use quantum light within deployable quantum sensors. Here we present a photonic integrated circuit in thin-film lithium niobate that meets these requirements. We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics. Using 26.2 milliwatts of optical power, we measure (2.7 ± 0.2)% squeezing and apply it to increase the signal-to-noise ratio of phase measurement. We anticipate that photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.

    View details for DOI 10.1038/s41467-023-38246-6

    View details for PubMedID 37291141

    View details for PubMedCentralID 9352777

  • Bias-stable Sub-Volt Visible Electro-optic Modulator in Thin-Film Lithium Niobate Celik, O., Ammar, N., Stokowski, H. S., Park, T., Safavi-Naeini, A., IEEE IEEE. 2023
  • Tunable dual wavelength laser on thin film lithium niobate Lufungula, I., Mayor, F. M., Herrmann, J. F., Park, T., Stokowski, H. S., Hwang, A. Y., De Beeck, C., Atalar, O., Jiang, W., Kuyken, B., Safavi-Naeini, A. H., IEEE IEEE. 2023
  • Ultra-broadband mid-infrared generation in dispersion-engineered thin-film lithium niobate OPTICS EXPRESS Mishra, J., Jankowski, M., Hwang, A. Y., Stokowski, H. S., McKenna, T. P., Langrock, C., Ng, E., Heydari, D., Mabuchi, H., Safavi-Naeini, A. H., Fejer, M. M. 2022; 30 (18): 32752-32760

    View details for DOI 10.1364/OE.467580

    View details for Web of Science ID 000850229100099

  • Ultra-low-power second-order nonlinear optics on a chip. Nature communications McKenna, T. P., Stokowski, H. S., Ansari, V., Mishra, J., Jankowski, M., Sarabalis, C. J., Herrmann, J. F., Langrock, C., Fejer, M. M., Safavi-Naeini, A. H. 2022; 13 (1): 4532

    Abstract

    Second-order nonlinear optical processes convert light from one wavelength to another and generate quantum entanglement. Creating chip-scale devices to efficiently control these interactions greatly increases the reach of photonics. Existing silicon-based photonic circuits utilize the third-order optical nonlinearity, but an analogous integrated platform for second-order nonlinear optics remains an outstanding challenge. Here we demonstrate efficient frequency doubling and parametric oscillation with a threshold of tens of micro-watts in an integrated thin-film lithium niobate photonic circuit. We achieve degenerate and non-degenerate operation of the parametric oscillator at room temperature and tune its emission over one terahertz by varying the pump frequency by hundreds of megahertz. Finally, we observe cascaded second-order processes that result in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.

    View details for DOI 10.1038/s41467-022-31134-5

    View details for PubMedID 35927246

  • High-bandwidth CMOS-voltage-level electro-optic modulation of 780 nm light in thin-film lithium niobate OPTICS EXPRESS Celik, O., Sarabalis, C. J., Mayor, F. M., Stokowski, H. S., Herrmann, J. F., McKenna, T. P., Lee, N. A., Jiang, W., Multani, K. S., Safavi-Naeini, A. H. 2022; 30 (13): 23177-23186

    View details for DOI 10.1364/OE.460119

    View details for Web of Science ID 000813479600073

  • High-efficiency second harmonic generation of blue light on thin-film lithium niobate. Optics letters Park, T., Stokowski, H. S., Ansari, V., McKenna, T. P., Hwang, A. Y., Fejer, M. M., Safavi-Naeini, A. H. 2022; 47 (11): 2706-2709

    Abstract

    The strength of interactions between photons in a chi(2) nonlinear optical waveguide increases at shorter wavelengths. These larger interactions enable coherent spectral translation and light generation at a lower power, over a broader bandwidth, and in a smaller device: all of which open the door to new technologies spanning fields from classical to quantum optics. Stronger interactions may also grant access to new regimes of quantum optics to be explored at the few-photon level. One promising platform that could enable these advances is thin-film lithium niobate (TFLN), due to its broad optical transparency window and possibility for quasi-phase matching and dispersion engineering. In this Letter, we demonstrate second harmonic generation of blue light on an integrated thin-film lithium niobate waveguide and observe a conversion efficiency of eta0=33, 000%/W-cm2, significantly exceeding previous demonstrations.

    View details for DOI 10.1364/OL.455046

    View details for PubMedID 35648910

  • Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire OPTICA Mishra, J., McKenna, T. P., Ng, E., Stokowski, H. S., Jankowski, M., Langrock, C., Heydari, D., Mabuchi, H., Fejer, M. M., Safavi-Naeini, A. H. 2021; 8 (6): 921-924
  • Fully-Resonant Second Harmonic Generation in Periodically Poled Thin-Film Lithium Niobate McKenna, T. P., Stokowski, H. S., Ansari, V., Mishra, J., Jankowski, M., Sarabalis, C. J., Herrmann, J. F., Langrock, C., Fejer, M. M., Safavi-Naeini, A. H., IEEE IEEE. 2021
  • Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire Mishra, J., McKenna, T. P., Ng, E., Stokowski, H. S., Jankowski, M., Langrock, C., Heydari, D., Mabuchi, H., Safavi-Naeini, A. H., Fejer, M. M., IEEE IEEE. 2021
  • Optical Parametric Oscillator in Thin-Film Lithium Niobate with a 130 mu W Threshold Stokowski, H. S., McKenna, T. P., Ansari, V., Mishra, J., Jankowski, M., Sarabalis, C. J., Herrmann, J. F., Langrock, C., Fejer, M. M., Safavi-Naeini, A. H., IEEE IEEE. 2021
  • Determination of Fermi Level Position at the Graphene/GaN Interface Using Electromodulation Spectroscopy ADVANCED MATERIALS INTERFACES Herman, A. P., Janicki, L., Stokowski, H. S., Rudzinski, M., Rozbiegala, E., Sobanska, M., Zytkiewicz, Z. R., Kudrawiec, R. 2020
  • Development of a Millimeter-Wave Transducer for Quantum Networks Multani, K. S., Stokowski, H., Snively, E., Patel, R., Jiang, W., Lee, N., Welander, P. B., Nanni, E. A., Safavi-Naeini, A. H., IEEE IEEE. 2020
  • Depletion Layer Built-In Field at (1-100), (0001), and (000-1) GaN/Water Junction and Its Role in Semiconductor Nanowire Water Splitting ADVANCED MATERIALS INTERFACES Stokowski, H., Janicki, L., Serafinczuk, J., Siekacz, M., Skierbiszewski, C., Kudrawiec, R. 2019; 6 (4)
  • Origin and annealing of deep-level defects in GaNAs grown by metalorganic vapor phase epitaxy JOURNAL OF APPLIED PHYSICS Gelczuk, L., Stokowski, H., Dabrowska-Szata, M., Kudrawiec, R. 2016; 119 (18)

    View details for DOI 10.1063/1.4949514

    View details for Web of Science ID 000377717500052

  • Bi-induced acceptor level responsible for partial compensation of native free electron density in InP1-xBix dilute bismide alloys JOURNAL OF PHYSICS D-APPLIED PHYSICS Gelczuk, L., Stokowski, H., Kopaczek, J., Zhang, L., Li, Y., Wang, K., Wang, P., Wang, S., Kudrawiec, R. 2016; 49 (11)