All Publications


  • Selective prediction for extracting unstructured clinical data. Journal of the American Medical Informatics Association : JAMIA Swaminathan, A., Lopez, I., Wang, W., Srivastava, U., Tran, E., Bhargava-Shah, A., Wu, J. Y., Ren, A. L., Caoili, K., Bui, B., Alkhani, L., Lee, S., Mohit, N., Seo, N., Macedo, N., Cheng, W., Liu, C., Thomas, R., Chen, J. H., Gevaert, O. 2023

    Abstract

    While there are currently approaches to handle unstructured clinical data, such as manual abstraction and structured proxy variables, these methods may be time-consuming, not scalable, and imprecise. This article aims to determine whether selective prediction, which gives a model the option to abstain from generating a prediction, can improve the accuracy and efficiency of unstructured clinical data abstraction.We trained selective classifiers (logistic regression, random forest, support vector machine) to extract 5 variables from clinical notes: depression (n = 1563), glioblastoma (GBM, n = 659), rectal adenocarcinoma (DRA, n = 601), and abdominoperineal resection (APR, n = 601) and low anterior resection (LAR, n = 601) of adenocarcinoma. We varied the cost of false positives (FP), false negatives (FN), and abstained notes and measured total misclassification cost.The depression selective classifiers abstained on anywhere from 0% to 97% of notes, and the change in total misclassification cost ranged from -58% to 9%. Selective classifiers abstained on 5%-43% of notes across the GBM and colorectal cancer models. The GBM selective classifier abstained on 43% of notes, which led to improvements in sensitivity (0.94 to 0.96), specificity (0.79 to 0.96), PPV (0.89 to 0.98), and NPV (0.88 to 0.91) when compared to a non-selective classifier and when compared to structured proxy variables.We showed that selective classifiers outperformed both non-selective classifiers and structured proxy variables for extracting data from unstructured clinical notes.Selective prediction should be considered when abstaining is preferable to making an incorrect prediction.

    View details for DOI 10.1093/jamia/ocad182

    View details for PubMedID 37769323

  • Critically reading machine learning literature in neurosurgery: a reader's guide and checklist for appraising prediction models. Neurosurgical focus Emani, S., Swaminathan, A., Grobman, B., Duvall, J. B., Lopez, I., Arnaout, O., Huang, K. T. 2023; 54 (6): E3

    Abstract

    OBJECTIVE: Machine learning (ML) has become an increasingly popular tool for use in neurosurgical research. The number of publications and interest in the field have recently seen significant expansion in both quantity and complexity. However, this also places a commensurate burden on the general neurosurgical readership to appraise this literature and decide if these algorithms can be effectively translated into practice. To this end, the authors sought to review the burgeoning neurosurgical ML literature and to develop a checklist to help readers critically review and digest this work.METHODS: The authors performed a literature search of recent ML papers in the PubMed database with the terms "neurosurgery" AND "machine learning," with additional modifiers "trauma," "cancer," "pediatric," and "spine" also used to ensure a diverse selection of relevant papers within the field. Papers were reviewed for their ML methodology, including the formulation of the clinical problem, data acquisition, data preprocessing, model development, model validation, model performance, and model deployment.RESULTS: The resulting checklist consists of 14 key questions for critically appraising ML models and development techniques; these are organized according to their timing along the standard ML workflow. In addition, the authors provide an overview of the ML development process, as well as a review of key terms, models, and concepts referenced in the literature.CONCLUSIONS: ML is poised to become an increasingly important part of neurosurgical research and clinical care. The authors hope that dissemination of education on ML techniques will help neurosurgeons to critically review new research better and more effectively integrate this technology into their practices.

    View details for DOI 10.3171/2023.3.FOCUS2352

    View details for PubMedID 37283326

  • Predictive Value of Clinical Complete Response after Chemoradiation for Rectal Cancer Liu, C., Boncompagni, A. A., Perrone, K., Agarwal, A., Hur, D. G., Lopez, I., Sheth, V., Morris, A. M. LIPPINCOTT WILLIAMS & WILKINS. 2022: S51-S52