All Publications


  • Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nature nanotechnology Sood, A., Haber, J. B., Carlström, J., Peterson, E. A., Barre, E., Georgaras, J. D., Reid, A. H., Shen, X., Zajac, M. E., Regan, E. C., Yang, J., Taniguchi, T., Watanabe, K., Wang, F., Wang, X., Neaton, J. B., Heinz, T. F., Lindenberg, A. M., da Jornada, F. H., Raja, A. 2022

    Abstract

    Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe2/WS2 monolayers. Following the selective excitation of WSe2, we measure the concurrent heating of both WSe2 and WS2 on a picosecond timescale-an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron-phonon coupling via layer-hybridized electronic states-a novel route to control energy transport across atomic junctions.

    View details for DOI 10.1038/s41565-022-01253-7

    View details for PubMedID 36543882

  • Structure of the moire exciton captured by imaging its electron and hole. Nature Karni, O., Barre, E., Pareek, V., Georgaras, J. D., Man, M. K., Sahoo, C., Bacon, D. R., Zhu, X., Ribeiro, H. B., O'Beirne, A. L., Hu, J., Al-Mahboob, A., Abdelrasoul, M. M., Chan, N. S., Karmakar, A., Winchester, A. J., Kim, B., Watanabe, K., Taniguchi, T., Barmak, K., Madeo, J., da Jornada, F. H., Heinz, T. F., Dani, K. M. 2022; 603 (7900): 247-252

    Abstract

    Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation1-4, single-photon emission and other quantum information applications5-7. Yet, despite extensive optical spectroscopic investigations8-12, critical information about their size, valley configuration and the influence of the moire potential remains unknown. Here, in a WSe2/MoS2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2nm, comparable with the moire-unit-cell length of 6.1nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8nm diameter within the moire cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moire unit cells. Unlike large moire cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.

    View details for DOI 10.1038/s41586-021-04360-y

    View details for PubMedID 35264760