All Publications


  • A human mutation in STAT3 promotes type 1 diabetes through a defect in CD8+ T cell tolerance. The Journal of experimental medicine Warshauer, J. T., Belk, J. A., Chan, A. Y., Wang, J., Gupta, A. R., Shi, Q., Skartsis, N., Peng, Y., Phipps, J. D., Acenas, D., Smith, J. A., Tamaki, S. J., Tang, Q., Gardner, J. M., Satpathy, A. T., Anderson, M. S. 2021; 218 (8)

    Abstract

    Naturally occurring cases of monogenic type 1 diabetes (T1D) help establish direct mechanisms driving this complex autoimmune disease. A recently identified de novo germline gain-of-function (GOF) mutation in the transcriptional regulator STAT3 was found to cause neonatal T1D. We engineered a novel knock-in mouse incorporating this highly diabetogenic human STAT3 mutation (K392R) and found that these mice recapitulated the human autoimmune diabetes phenotype. Paired single-cell TCR and RNA sequencing revealed that STAT3-GOF drives proliferation and clonal expansion of effector CD8+ cells that resist terminal exhaustion. Single-cell ATAC-seq showed that these effector T cells are epigenetically distinct and have differential chromatin architecture induced by STAT3-GOF. Analysis of islet TCR clonotypes revealed a CD8+ cell reacting against known antigen IGRP, and STAT3-GOF in an IGRP-reactive TCR transgenic model demonstrated that STAT3-GOF intrinsic to CD8+ cells is sufficient to accelerate diabetes onset. Altogether, these findings reveal a diabetogenic CD8+ T cell response that is restrained in the presence of normal STAT3 activity and drives diabetes pathogenesis.

    View details for DOI 10.1084/jem.20210759

    View details for PubMedID 34115115

  • Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity Huang, X., Ferris, S. T., Kim, S., Choudhary, M. N., Belk, J. A., Fan, C., Qi, Y., Sudan, R., Xia, Y., Desai, P., Chen, J., Ly, N., Shi, Q., Bagadia, P., Liu, T., Guilliams, M., Egawa, T., Colonna, M., Diamond, M. S., Murphy, T. L., Satpathy, A. T., Wang, T., Murphy, K. M. 2021

    Abstract

    The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Delta-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Delta-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Delta-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at+164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.

    View details for DOI 10.1016/j.immuni.2021.04.015

    View details for PubMedID 34004142

  • Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science (New York, N.Y.) Weber, E. W., Parker, K. R., Sotillo, E., Lynn, R. C., Anbunathan, H., Lattin, J., Good, Z., Belk, J. A., Daniel, B., Klysz, D., Malipatlolla, M., Xu, P., Bashti, M., Heitzeneder, S., Labanieh, L., Vandris, P., Majzner, R. G., Qi, Y., Sandor, K., Chen, L., Prabhu, S., Gentles, A. J., Wandless, T. J., Satpathy, A. T., Chang, H. Y., Mackall, C. L. 2021; 372 (6537)

    Abstract

    T cell exhaustion limits immune responses against cancer and is a major cause of resistance to chimeric antigen receptor (CAR)-T cell therapeutics. Using murine xenograft models and an in vitro model wherein tonic CAR signaling induces hallmark features of exhaustion, we tested the effect of transient cessation of receptor signaling, or rest, on the development and maintenance of exhaustion. Induction of rest through enforced down-regulation of the CAR protein using a drug-regulatable system or treatment with the multikinase inhibitor dasatinib resulted in the acquisition of a memory-like phenotype, global transcriptional and epigenetic reprogramming, and restored antitumor functionality in exhausted CAR-T cells. This work demonstrates that rest can enhance CAR-T cell efficacy by preventing or reversing exhaustion, and it challenges the notion that exhaustion is an epigenetically fixed state.

    View details for DOI 10.1126/science.aba1786

    View details for PubMedID 33795428

  • Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell Flynn, R. A., Belk, J. A., Qi, Y., Yasumoto, Y., Wei, J., Alfajaro, M. M., Shi, Q., Mumbach, M. R., Limaye, A., DeWeirdt, P. C., Schmitz, C. O., Parker, K. R., Woo, E., Chang, H. Y., Horvath, T. L., Carette, J. E., Bertozzi, C. R., Wilen, C. B., Satpathy, A. T. 2021

    Abstract

    SARS-CoV-2 is the cause of a pandemic with growing global mortality. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with ChIRP-MS data from three other RNA viruses defined viral specificity of RNA-host protein interactions. Targeted CRISPR screens revealed that the majority of functional RNA-binding proteins protect the host from virus-induced cell death, and comparative CRISPR screens across seven RNA viruses revealed shared and SARS-specific antiviral factors. Finally, by combining the RNA-centric approach and functional CRISPR screens, we demonstrated a physical and functional connection between SARS-CoV-2 and mitochondria, highlighting this organelle as a general platform for antiviral activity. Altogether, these data provide a comprehensive catalog of functional SARS-CoV-2 RNA-host protein interactions, which may inform studies to understand the host-virus interface and nominate host pathways that could be targeted for therapeutic benefit.

    View details for DOI 10.1016/j.cell.2021.03.012

    View details for PubMedID 33743211

  • Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity Wong, R., Belk, J. A., Govero, J., Uhrlaub, J. L., Reinartz, D., Zhao, H., Errico, J. M., D'Souza, L., Ripperger, T. J., Nikolich-Zugich, J., Shlomchik, M. J., Satpathy, A. T., Fremont, D. H., Diamond, M. S., Bhattacharya, D. 2020

    Abstract

    Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.

    View details for DOI 10.1016/j.immuni.2020.09.001

    View details for PubMedID 33010224

  • Systematic discovery and functional interrogation of SARS-CoV-2 viral RNA-host protein interactions during infection. bioRxiv : the preprint server for biology Flynn, R. A., Belk, J. A., Qi, Y. n., Yasumoto, Y. n., Schmitz, C. O., Mumbach, M. R., Limaye, A. n., Wei, J. n., Alfajaro, M. M., Parker, K. R., Chang, H. Y., Horvath, T. L., Carette, J. E., Bertozzi, C. n., Wilen, C. B., Satpathy, A. T. 2020

    Abstract

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a pandemic with growing global mortality. There is an urgent need to understand the molecular pathways required for host infection and anti-viral immunity. Using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS), we identified 309 host proteins that bind the SARS-CoV-2 RNA during active infection. Integration of this data with viral ChIRP-MS data from three other positive-sense RNA viruses defined pan-viral and SARS-CoV-2-specific host interactions. Functional interrogation of these factors with a genome-wide CRISPR screen revealed that the vast majority of viral RNA-binding proteins protect the host from virus-induced cell death, and we identified known and novel anti-viral proteins that regulate SARS-CoV-2 pathogenicity. Finally, our RNA-centric approach demonstrated a physical connection between SARS-CoV-2 RNA and host mitochondria, which we validated with functional and electron microscopy data, providing new insights into a more general virus-specific protein logic for mitochondrial interactions. Altogether, these data provide a comprehensive catalogue of SARS-CoV-2 RNA-host protein interactions, which may inform future studies to understand the mechanisms of viral pathogenesis, as well as nominate host pathways that could be targeted for therapeutic benefit.· ChIRP-MS of SARS-CoV-2 RNA identifies a comprehensive viral RNA-host protein interaction network during infection across two species· Comparison to RNA-protein interaction networks with Zika virus, dengue virus, and rhinovirus identify SARS-CoV-2-specific and pan-viral RNA protein complexes and highlights distinct intracellular trafficking pathways· Intersection of ChIRP-MS and genome-wide CRISPR screens identify novel SARS-CoV-2-binding proteins with pro- and anti-viral function· Viral RNA-RNA and RNA-protein interactions reveal specific SARS-CoV-2-mediated mitochondrial dysfunction during infection.

    View details for DOI 10.1101/2020.10.06.327445

    View details for PubMedID 33052334

    View details for PubMedCentralID PMC7553159