Academic Appointments


  • Basic Life Science Research Associate, Biology

All Publications


  • Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1 PLANT CELL Kim, J., Li, X., Roden, J. A., Taylor, K. W., Aakre, C. D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., McLane, H., Martin, G. B., Mudgett, M. B. 2009; 21 (4): 1305-1323

    Abstract

    XopN is a virulence factor from Xanthomonas campestris pathovar vesicatoria (Xcv) that is translocated into tomato (Solanum lycopersicum) leaf cells by the pathogen's type III secretion system. Xcv DeltaxopN mutants are impaired in growth and have reduced ability to elicit disease symptoms in susceptible tomato leaves. We show that XopN action in planta reduced pathogen-associated molecular pattern (PAMP)-induced gene expression and callose deposition in host tissue, indicating that XopN suppresses PAMP-triggered immune responses during Xcv infection. XopN is predicted to have irregular, alpha-helical repeats, suggesting multiple protein-protein interactions in planta. Consistent with this prediction, XopN interacted with the cytosolic domain of a Tomato Atypical Receptor-Like Kinase1 (TARK1) and four Tomato Fourteen-Three-Three isoforms (TFT1, TFT3, TFT5, and TFT6) in yeast. XopN/TARK1 and XopN/TFT1 interactions were confirmed in planta by bimolecular fluorescence complementation and pull-down analysis. Xcv DeltaxopN virulence defects were partially suppressed in transgenic tomato leaves with reduced TARK1 mRNA levels, indicating that TARK1 plays an important role in the outcome of Xcv-tomato interactions. These data provide the basis for a model in which XopN binds to TARK1 to interfere with TARK1-dependent signaling events triggered in response to Xcv infection.

    View details for DOI 10.1105/tpc.108.063123

    View details for Web of Science ID 000266295800025

    View details for PubMedID 19366901

    View details for PubMedCentralID PMC2685636

  • XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves PLANT CELL Kim, J., Taylor, K. W., Hotson, A., Keegan, M., Schmelz, E. A., Mudgett, M. B. 2008; 20 (7): 1915-1929

    Abstract

    We demonstrate that XopD, a type III effector from Xanthomonas campestris pathovar vesicatoria (Xcv), suppresses symptom production during the late stages of infection in susceptible tomato (Solanum lycopersicum) leaves. XopD-dependent delay of tissue degeneration correlates with reduced chlorophyll loss, reduced salicylic acid levels, and changes in the mRNA abundance of senescence- and defense-associated genes despite high pathogen titers. Subsequent structure-function analyses led to the discovery that XopD is a DNA binding protein that alters host transcription. XopD contains a putative helix-loop-helix domain required for DNA binding and two conserved ERF-associated amphiphilic motifs required to repress salicylic acid- and jasmonic acid-induced gene transcription in planta. Taken together, these data reveal that XopD is a unique virulence factor in Xcv that alters host transcription, promotes pathogen multiplication, and delays the onset of leaf chlorosis and necrosis.

    View details for DOI 10.1105/tpc.108.058529

    View details for Web of Science ID 000258725600019

    View details for PubMedID 18664616

    View details for PubMedCentralID PMC2518228