Academic Appointments


Administrative Appointments


  • Assistant Professor, Biology, Stanford University (2003 - 2009)
  • Associate Professor, Biology, Stanford University (2009 - 2013)
  • Professor, Biology & Pathology, Stanford University (2013 - Present)
  • Howard Hughes Investigator, Biology, Stanford University (2008 - Present)

Honors & Awards


  • Helen Hey Whitney Postdoctoral Fellowship, Helen Hey Whitney Foundation (2000-2003)
  • Alfred Sloan Award, Alfred Sloan Foundation (2004-2006)
  • Whitehall Foundation Award, Whitehall Foundation (2004-2007)
  • Mcknight Neuroscience Scholar Award, Mcknight Foundation (2004-2007)
  • Basil O'’Connor Award, March of Dimes (2005-2006)
  • Searle Scholar Award, Chicargo Community Trust (2005-2008)
  • Keck Distinguished Young Investigator Award, William Keck Foundation (2005-2009)
  • Young Investigator Award, HFSP, Human Frontier Science Program (2006-2009)

Professional Education


  • Ph. D, Duke University, Molecular Cellular neuroscience (1999)
  • MD, Tongji Medical University, China (1994)

Current Research and Scholarly Interests


The connectivity of a neuron (its unique constellation of synaptic inputs and outputs) is essential for its function. Neuronal connections are made with exquisite accuracy between specific types of neurons. How each neuron finds its synaptic partners has been a central question in developmental neurobiology. We utilize the relatively simple nervous system of nematode C. elegans, to search for molecules that can specify synaptic connections and understand the molecular mechanisms of synaptic as

Projects


  • Mechanisms of Synaptic Specificity in C. elegans, National Institutes of Health

    The major goals for this project are to understand how SYG-2 and SYG-1 interaction leads to the target choice of HSNL in C. elegans

    Location

    Stanford University, Department of Biology, Stanford, CA

  • Patterning dendritic branches with environmental and neuronal surface molecules, National Institutes of Health

    The major goal of this project is to understand the molecular mechanisms underlying dendrite growth and branching

    Location

    Department of Biology, Stanford University, Stanford, CA

  • Intracellular Trafficking of Neuronal Proteins, Howard Hughes Medical Institute

    This award supports our research project on the investigation of molecular mechanisms of Kirrel protein family in synaptic connectivity

    Location

    Department of Biology, Stanford University, Stanford, CA

2018-19 Courses


Stanford Advisees


Graduate and Fellowship Programs


All Publications


  • Neurite Development and Repair in Worms and Flies. Annual review of neuroscience Richardson, C. E., Shen, K. 2019

    Abstract

    How the nervous system is wired has been a central question of neuroscience since the inception of the field, and many of the foundational discoveries and conceptual advances have been made through the study of invertebrate experimental organisms, including Caenorhabditis elegans and Drosophila melanogaster. Although many guidance molecules and receptors have been identified, recent experiments have shed light on the many modes of action for these pathways. Here, we summarize the recent progress in determining how the physical and temporal constraints of the surrounding environment provide instructive regulations in nervous system wiring. We use Netrin and its receptors as an example to analyze the complexity of how they guide neurite outgrowth. In neurite repair, conserved injury detection and response-signaling pathways regulate gene expression and cytoskeletal dynamics. We also describe recent developments in the research on molecular mechanisms of neurite regeneration in worms and flies. Expected final online publication date for the Annual Review of Neuroscience Volume 42 is July 8, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

    View details for DOI 10.1146/annurev-neuro-070918-050208

    View details for PubMedID 30883262

  • Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nature communications Liu, X., Guo, X., Niu, L., Li, X., Sun, F., Hu, J., Wang, X., Shen, K. 2019; 10 (1): 568

    Abstract

    Endoplasmic reticulum (ER) is characterized by interconnected tubules and sheets. Neuronal ER adopts specific morphology in axons, dendrites and soma. Here we study mechanisms underlying ER morphogenesis in a C. elegans sensory neuron PVD. In PVD soma and dendrite branch points, ER tubules connect to form networks. ER tubules fill primary dendrites but only extend to some but not all dendritic branches. We find that the Atlastin-1 ortholog, atln-1 is required for neuronal ER morphology. In atln-1 mutants with impaired GTPase activity, ER networks in soma and dendrite branch points are reduced and replaced by tubules, and ER tubules retracted from high-order dendritic branches, causing destabilized microtubule in these branches. The abnormal ER morphology likely causes defects in mitochondria fission at dendritic branch points. Mutant alleles of Atlastin-1 found in Hereditary Spastic Paraplegia (HSP) patients show similar ER phenotypes, suggesting that neuronal ER impairment contributes to HSP disease pathogenesis.

    View details for DOI 10.1038/s41467-019-08478-6

    View details for PubMedID 30718476

  • The inositol 5-phosphatase INPP5K participates in the fine control of ER organization JOURNAL OF CELL BIOLOGY Dong, R., Zhu, T., Benedetti, L., Gowrishankar, S., Deng, H., Cai, Y., Wang, X., Shen, K., De Camilli, P. 2018; 217 (10): 3577–92

    Abstract

    INPP5K (SKIP) is an inositol 5-phosphatase that localizes in part to the endoplasmic reticulum (ER). We show that recruitment of INPP5K to the ER is mediated by ARL6IP1, which shares features of ER-shaping proteins. Like ARL6IP1, INPP5K is preferentially localized in ER tubules and enriched, relative to other ER resident proteins (Sec61β, VAPB, and Sac1), in newly formed tubules that grow along microtubule tracks. Depletion of either INPP5K or ARL6IP1 results in the increase of ER sheets. In a convergent but independent study, a screen for mutations affecting the distribution of the ER network in dendrites of the PVD neurons of Caenorhabditis elegans led to the isolation of mutants in CIL-1, which encodes the INPP5K worm orthologue. The mutant phenotype was rescued by expression of wild type, but not of catalytically inactive CIL-1. Our results reveal an unexpected role of an ER localized polyphosphoinositide phosphatase in the fine control of ER network organization.

    View details for DOI 10.1083/jcb.201802125

    View details for Web of Science ID 000446007700022

    View details for PubMedID 30087126

    View details for PubMedCentralID PMC6168264

  • gamma-Neurexin and Frizzled Mediate Parallel Synapse Assembly Pathways Antagonized by Receptor Endocytosis. Neuron Kurshan, P. T., Merrill, S. A., Dong, Y., Ding, C., Hammarlund, M., Bai, J., Jorgensen, E. M., Shen, K. 2018

    Abstract

    Synapse formation defines neuronal connectivity and is thus essential for neuronal circuit assembly. Trans-synaptic interactions of cell adhesion molecules are thought to induce synapse assembly. Here we demonstrate that a recently discovered and conserved short form of neurexin, gamma-neurexin, which lacks canonical extracellular domains, is nonetheless sufficient to promote presynaptic assembly in the nematode C.elegans. gamma- but not alpha-neurexin is required for assembling active zone components, recruiting synaptic vesicles, and clustering calcium channels at release sites to promote evoked synaptic transmission. Furthermore, we find that neurexin functions in parallel with the transmembrane receptor Frizzled, as the absence of both proteins leads to an enhanced phenotype-the loss of most synapses. Frizzled's pro-synaptogenic function is independent of its ligand, Wnt. Wnt binding instead eliminates synapses by inducing Frizzled's endocytosis and the downregulation of neurexin. These results reveal how pro- and anti-synaptogenic factors converge to precisely sculpt circuit formation invivo.

    View details for DOI 10.1016/j.neuron.2018.09.007

    View details for PubMedID 30269993

  • Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport. Cell reports Lipton, D. M., Maeder, C. I., Shen, K. 2018; 24 (10): 2709–22

    Abstract

    The proper assembly of neural circuits depends on the process of synaptogenesis, or the formation of synapses between partner neurons. Using the dopaminergic PDE neurons in C.elegans, we developed an invivo system to study the earliest steps of the formation of en passant presynaptic specializations behind an extending growth cone. We find that presynaptic materials coalesce into puncta in as littleas a few minutes and that both synaptic vesicle (SV) and active zone (AZ) proteins arrive nearly simultaneously at the nascent sites of synapse formation. We show that precise regulation of UNC-104/Kinesin-3 determines the distribution of SV proteins along the axon. The localization of AZ proteins to en passant puncta, however, is largely independent of the major axonal kinesins: UNC-104/Kinesin-3 and UNC-116/Kinesin-1. Moreover, AZ proteins play a crucial role in recruiting and tethering SV precursors (SVPs).

    View details for DOI 10.1016/j.celrep.2018.07.096

    View details for PubMedID 30184504

  • The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell Maeder, C. I., Kim, J., Liang, X., Kaganovsky, K., Shen, A., Li, Q., Li, Z., Wang, S., Xu, X. Z., Li, J. B., Xiang, Y. K., Ding, J. B., Shen, K. 2018

    Abstract

    Synaptic vesicle and active zone proteins are required for synaptogenesis. The molecular mechanisms for coordinated synthesis of these proteins are not understood. Using forward genetic screens, we identified the conserved THO nuclear export complex (THOC) as an important regulator of presynapse development in C.elegans dopaminergic neurons. In THOC mutants, synaptic messenger RNAs are retained in the nucleus, resulting in dramatic decrease of synaptic protein expression, near complete loss of synapses, and compromised dopamine function. CRE binding protein (CREB) interacts with THOC to mark synaptic transcripts for efficient nuclear export. Deletion of Thoc5, a THOC subunit, in mouse dopaminergic neurons causes severe defects in synapse maintenance and subsequent neuronal death in the substantia nigra compacta. These cellular defects lead to abrogated dopamine release, ataxia, and animal death. Together, our results argue that nuclear export mechanisms can select specific mRNAs and be a rate-limiting step for neuronal differentiation and survival.

    View details for DOI 10.1016/j.cell.2018.07.046

    View details for PubMedID 30146163

  • A Dendritic Guidance Receptor Complex Brings Together Distinct Actin Regulators to Drive Efficient F-Actin Assembly and Branching DEVELOPMENTAL CELL Zou, W., Dong, X., Broederdorf, T. R., Shen, A., Kramer, D. A., Shi, R., Liang, X., Miller, D. M., Xiang, Y. K., Yasuda, R., Chen, B., Shen, K. 2018; 45 (3): 362-+

    Abstract

    Proper morphogenesis of dendrites plays a fundamental role in the establishment of neural circuits. The molecular mechanism by which dendrites grow highly complex branches is not well understood. Here, using the Caenorhabditis elegans PVD neuron, we demonstrate that high-order dendritic branching requires actin polymerization driven by coordinated interactions between two membrane proteins, DMA-1 and HPO-30, with their cytoplasmic interactors, the RacGEF TIAM-1 and the actin nucleation promotion factor WAVE regulatory complex (WRC). The dendrite branching receptor DMA-1 directly binds to the PDZ domain of TIAM-1, while the claudin-like protein HPO-30 directly interacts with the WRC. On dendrites, DMA-1 and HPO-30 form a receptor-associated signaling complex to bring TIAM-1 and the WRC to close proximity, leading to elevated assembly of F-actin needed to drive high-order dendrite branching. The synergistic activation of F-actin assembly by scaffolding distinct actin regulators might represent a general mechanism in promoting complex dendrite arborization.

    View details for DOI 10.1016/j.devcel.2018.04.008

    View details for Web of Science ID 000432461400011

    View details for PubMedID 29738713

  • Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells JOURNAL OF CELL SCIENCE Zhu, T., Liang, X., Wang, X., Shen, K. 2017; 130 (23): 4063–71

    Abstract

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis.

    View details for DOI 10.1242/jcs.201699

    View details for Web of Science ID 000417108800012

    View details for PubMedID 29074578

    View details for PubMedCentralID PMC5769588

  • Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release ELIFE Xuan, Z., Manning, L., Nelson, J., Richmond, J. E., Colon-Ramos, D. A., Shen, K., Kurshan, P. T. 2017; 6

    Abstract

    Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.

    View details for DOI 10.7554/eLife.29276

    View details for Web of Science ID 000417864700001

    View details for PubMedID 29160205

    View details for PubMedCentralID PMC5728718

  • Establishing Neuronal Polarity with Environmental and Intrinsic Mechanisms NEURON Yogev, S., Shen, K. 2017; 96 (3): 638–50

    Abstract

    Neurons are among the most morphologically complex cells. A distinction between two compartments, axon and dendrite, generates cellular domains that differ in membrane composition and cytoskeletal structure, and sets the platform on which morphogens, transcription programs, and synaptic activity sculpt neuronal form. The establishment of this distinction, called Neuronal Polarity, entails interpreting spatial and intrinsic cues and converting them to cytoskeletal rearrangements that give rise to axons and dendrites. Hence, this early developmental event underpins the future functional properties of the neuron to receive and transmit information. Here we review the current understanding of developmental cues and cell biological mechanisms that establish polarity in newborn neurons, synthesizing information from vertebrate and invertebrate model systems.

    View details for DOI 10.1016/j.neuron.2017.10.021

    View details for Web of Science ID 000414203400008

    View details for PubMedID 29096077

  • Local inhibition of microtubule dynamics by dynein is required for neuronal cargo distribution NATURE COMMUNICATIONS Yogev, S., Maeder, C. I., Cooper, R., Horowitz, M., Hendricks, A. G., Shen, K. 2017; 8

    Abstract

    Abnormal axonal transport is associated with neuronal disease. We identified a role for DHC-1, the C. elegans dynein heavy chain, in maintaining neuronal cargo distribution. Surprisingly, this does not involve dynein's role as a retrograde motor in cargo transport, hinging instead on its ability to inhibit microtubule (MT) dynamics. Neuronal MTs are highly static, yet the mechanisms and functional significance of this property are not well understood. In disease-mimicking dhc-1 alleles, excessive MT growth and collapse occur at the dendrite tip, resulting in the formation of aberrant MT loops. These unstable MTs act as cargo traps, leading to ectopic accumulations of cargo and reduced availability of cargo at normal locations. Our data suggest that an anchored dynein pool interacts with plus-end-out MTs to stabilize MTs and allow efficient retrograde transport. These results identify functional significance for neuronal MT stability and suggest a mechanism for cellular dysfunction in dynein-linked disease.

    View details for DOI 10.1038/ncomms15063

    View details for Web of Science ID 000399053800001

    View details for PubMedID 28406181

  • Optical control of cell signaling by single-chain photoswitchable kinases. Science Zhou, X. X., Fan, L. Z., Li, P., Shen, K., Lin, M. Z. 2017; 355 (6327): 836-842

    Abstract

    Protein kinases transduce signals to regulate a wide array of cellular functions in eukaryotes. A generalizable method for optical control of kinases would enable fine spatiotemporal interrogation or manipulation of these various functions. We report the design and application of single-chain cofactor-free kinases with photoswitchable activity. We engineered a dimeric protein, pdDronpa, that dissociates in cyan light and reassociates in violet light. Attaching two pdDronpa domains at rationally selected locations in the kinase domain, we created the photoswitchable kinases psRaf1, psMEK1, psMEK2, and psCDK5. Using these photoswitchable kinases, we established an all-optical cell-based assay for screening inhibitors, uncovered a direct and rapid inhibitory feedback loop from ERK to MEK1, and mediated developmental changes and synaptic vesicle transport in vivo using light.

    View details for DOI 10.1126/science.aah3605

    View details for PubMedID 28232577

  • Genetic defects in beta-spectrin and tau sensitize C.elegans axons to movement-induced damage via torque-tension coupling ELIFE Krieg, M., Stuehmer, J., Cueva, J. G., Fetter, R., Spilker, K., Cremers, D., Shen, K., Dunn, A. R., Goodman, M. B. 2017; 6
  • Deep phenotyping unveils hidden traits and genetic relations in subtle mutants NATURE COMMUNICATIONS San-Miguel, A., Kurshan, P. T., Crane, M. M., Zhao, Y., McGrath, P. T., Shen, K., Lu, H. 2016; 7

    Abstract

    Discovering mechanistic insights from phenotypic information is critical for the understanding of biological processes. For model organisms, unlike in cell culture, this is currently bottlenecked by the non-quantitative nature and perceptive biases of human observations, and the limited number of reporters that can be simultaneously incorporated in live animals. An additional challenge is that isogenic populations exhibit significant phenotypic heterogeneity. These difficulties limit genetic approaches to many biological questions. To overcome these bottlenecks, we developed tools to extract complex phenotypic traits from images of fluorescently labelled subcellular landmarks, using C. elegans synapses as a test case. By population-wide comparisons, we identified subtle but relevant differences inaccessible to subjective conceptualization. Furthermore, the models generated testable hypotheses of how individual alleles relate to known mechanisms or belong to new pathways. We show that our model not only recapitulates current knowledge in synaptic patterning but also identifies novel alleles overlooked by traditional methods.

    View details for DOI 10.1038/ncomms12990

    View details for Web of Science ID 000388319200001

    View details for PubMedID 27876787

    View details for PubMedCentralID PMC5122966

  • Microtubule Organization Determines Axonal Transport Dynamics. Neuron Yogev, S., Cooper, R., Fetter, R., Horowitz, M., Shen, K. 2016; 92 (2): 449-460

    Abstract

    Axonal microtubule (MT) arrays are the major cytoskeleton substrate for cargo transport. How MT organization, i.e., polymer length, number, and minus-end spacing, is regulated and how it impinges on axonal transport are unclear. We describe a method for analyzing neuronal MT organization using light microscopy. This method circumvents the need for electron microscopy reconstructions and is compatible with live imaging of cargo transport and MT dynamics. Examination of a C. elegans motor neuron revealed how age, MT-associated proteins, and signaling pathways control MT length, minus-end spacing, and coverage. In turn, MT organization determines axonal transport progression: cargoes pause at polymer termini, suggesting that switching MT tracks is rate limiting for efficient transport. Cargo run length is set by MT length, and higher MT coverage correlates with shorter pauses. These results uncover the principles and mechanisms of neuronal MT organization and its regulation of axonal cargo transport.

    View details for DOI 10.1016/j.neuron.2016.09.036

    View details for PubMedID 27764672

  • A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans ELIFE Zou, W., Shen, A., Dong, X., Tugizova, M., Xiang, Y. K., Shen, K. 2016; 5

    Abstract

    Ligand receptor interactions instruct axon guidance during development. How dendrites are guided to specific targets is less understood. The C. elegans PVD sensory neuron innervates muscle-skin interface with its elaborate dendritic branches. Here, we found that LECT-2, the ortholog of leukocyte cell-derived chemotaxin-2 (LECT2), is secreted from the muscles and required for muscle innervation by PVD. Mosaic analyses showed that LECT-2 acted locally to guide the growth of terminal branches. Ectopic expression of LECT-2 from seam cells is sufficient to redirect the PVD dendrites onto seam cells. LECT-2 functions in a multi-protein receptor-ligand complex that also contains two transmembrane ligands on the skin, SAX-7/L1CAM and MNR-1, and the neuronal transmembrane receptor DMA-1. LECT-2 greatly enhances the binding between SAX-7, MNR-1 and DMA-1. The activation of DMA-1 strictly requires all three ligands, which establishes a combinatorial code to precisely target and pattern dendritic arbors.

    View details for DOI 10.7554/eLife.18345

    View details for Web of Science ID 000387035300001

    View details for PubMedCentralID PMC5079751

  • Autoinhibition of a Neuronal Kinesin UNC-104/KIF1A Regulates the Size and Density of Synapses. Cell reports Niwa, S., Lipton, D. M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H., Shen, K. 2016; 16 (8): 2129-2141

    Abstract

    Kinesin motor proteins transport intracellular cargoes throughout cells by hydrolyzing ATP and moving along microtubule tracks. Intramolecular autoinhibitory interactions have been shown for several kinesins in vitro; however, the physiological significance of autoinhibition remains poorly understood. Here, we identified four mutations in the stalk region and motor domain of the synaptic vesicle (SV) kinesin UNC-104/KIF1A that specifically disrupt autoinhibition. These mutations augment both microtubule and cargo vesicle binding in vitro. In vivo, these mutations cause excessive activation of UNC-104, leading to decreased synaptic density, smaller synapses, and ectopic localization of SVs in the dendrite. We also show that the SV-bound small GTPase ARL-8 activates UNC-104 by unlocking the autoinhibition. These results demonstrate that the autoinhibitory mechanism is used to regulate the distribution of transport cargoes and is important for synaptogenesis in vivo.

    View details for DOI 10.1016/j.celrep.2016.07.043

    View details for PubMedID 27524618

    View details for PubMedCentralID PMC5432123

  • Two Clathrin Adaptor Protein Complexes Instruct Axon-Dendrite Polarity NEURON Li, P., Merrill, S. A., Jorgensen, E. M., Shen, K. 2016; 90 (3): 564-580

    Abstract

    The cardinal feature of neuronal polarization is the establishment and maintenance of axons and dendrites. How axonal and dendritic proteins are sorted and targeted to different compartments is poorly understood. Here, we identified distinct dileucine motifs that are necessary and sufficient to target transmembrane proteins to either the axon or the dendrite through direct interactions with the clathrin-associated adaptor protein complexes (APs) in C. elegans. Axonal targeting requires AP-3, while dendritic targeting is mediated by AP-1. The axonal dileucine motif binds to AP-3 with higher efficiency than to AP-1. Both AP-3 and AP-1 are localized to the Golgi but occupy adjacent domains. We propose that AP-3 and AP-1 directly select transmembrane proteins and target them to axon and dendrite, respectively, by sorting them into distinct vesicle pools.

    View details for DOI 10.1016/j.neuron.2016.04.020

    View details for Web of Science ID 000376254500016

    View details for PubMedID 27151641

  • Receptor tyrosine phosphatase CLR-1 acts in skin cells to promote sensory dendrite outgrowth DEVELOPMENTAL BIOLOGY Liu, X., Wang, X., Shen, K. 2016; 413 (1): 60-69

    Abstract

    Sensory dendrite morphogenesis is directed by intrinsic and extrinsic factors. The extracellular environment plays instructive roles in patterning dendrite growth and branching. However, the molecular mechanism is not well understood. In Caenorhabditis elegans, the proprioceptive neuron PVD forms highly branched sensory dendrites adjacent to the hypodermis. We report that receptor tyrosine phosphatase CLR-1 functions in the hypodermis to pattern the PVD dendritic branches. Mutations in clr-1 lead to loss of quaternary branches, reduced secondary branches and increased ectopic branches. CLR-1 is necessary for the dendrite extension but not for the initial filopodia formation. Its role is dependent on the intracellular phosphatase domain but not the extracellular adhesion domain, indicating that it functions through dephosphorylating downstream factors but not through direct adhesion with neurons. Genetic analysis reveals that clr-1 also functions in parallel with SAX-7/DMA-1 pathway to control PVD primary dendrite development. We provide evidence of a new environmental factor for PVD dendrite morphogenesis.

    View details for DOI 10.1016/j.ydbio.2016.03.001

    View details for Web of Science ID 000375025000007

    View details for PubMedID 26968353

    View details for PubMedCentralID PMC4834234

  • The Neuronal Kinesin UNC-104/KIF1A Is a Key Regulator of Synaptic Aging and Insulin Signaling-Regulated Memory. Current biology Li, L., Lei, H., Arey, R. N., Li, P., Liu, J., Murphy, C. T., Xu, X. Z., Shen, K. 2016; 26 (5): 605-615

    Abstract

    Aging is the greatest risk factor for a number of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. Furthermore, normal aging is associated with a decline in sensory, motor, and cognitive functions. Emerging evidence suggests that synapse alterations, rather than neuronal cell death, are the causes of neuronal dysfunctions in normal aging and in early stages of neurodegenerative diseases. However, little is known about the mechanisms underlying age-related synaptic decline. Here, we uncover a surprising role of the anterograde molecular motor UNC-104/KIF1A as a key regulator of neural circuit deterioration in aging C. elegans. Through analyses of synapse protein localization, synaptic transmission, and animal behaviors, we find that reduced function of UNC-104 accelerates motor circuit dysfunction with age, whereas upregulation of UNC-104 significantly improves motor function at advanced ages and also mildly extends lifespan. In addition, UNC-104-overexpressing animals outperform wild-type controls in associative learning and memory tests. Further genetic analyses suggest that UNC-104 functions downstream of the DAF-2-signaling pathway and is regulated by the FOXO transcription factor DAF-16, which contributes to the effects of DAF-2 in neuronal aging. Together, our cellular, electrophysiological, and behavioral analyses highlight the importance of axonal transport in the maintenance of synaptic structural integrity and function during aging and raise the possibility of targeting kinesins to slow age-related neural circuit dysfunction.

    View details for DOI 10.1016/j.cub.2015.12.068

    View details for PubMedID 26877087

    View details for PubMedCentralID PMC4783184

  • Precise regulation of the guidance receptor DMA-1 by KPC-1/Furin instructs dendritic branching decisions. eLife Dong, X., Chiu, H., Park, Y. J., Zou, W., Zou, Y., Özkan, E., Chang, C., Shen, K. 2016; 5

    Abstract

    Extracellular adhesion molecules and their neuronal receptors guide the growth and branching of axons and dendrites. Growth cones are attracted to intermediate targets, but they must switch their response upon arrival so that they can move away and complete the next stage of growth. Here, we show that KPC-1, a C. elegans Furin homolog, regulates the level of the branching receptor DMA-1 on dendrites by targeting it to late endosomes. In kpc-1 mutants, the level of DMA-1 is abnormally high on dendrites, resulting in trapping of dendrites at locations where a high level of the cognate ligand, the adhesion molecule SAX-7/L1, is present. The misregulation of DMA-1 also causes dendritic self-avoidance defects. Thus, precise regulation of guidance receptors creates flexibility of responses to guidance signals and is critical for neuronal morphogenesis.

    View details for DOI 10.7554/eLife.11008

    View details for PubMedID 26974341

    View details for PubMedCentralID PMC4811766

  • RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport PLOS GENETICS Taylor, C. A., Yan, J., Howell, A. S., Dong, X., Shen, K. 2015; 11 (12)
  • Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference FRONTIERS IN CELLULAR NEUROSCIENCE Choi, S., Han, K., Cutforth, T., Chung, W., Park, H., Lee, D., Kim, R., Kim, M., Choi, Y., Shen, K., Kim, E. 2015; 9

    Abstract

    Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2(-/-) mice) display moderate hyperactivity in a familiar, but not novel, environment and defective novel object recognition with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice also show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2(-/-) dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

    View details for DOI 10.3389/fncel.2015.00283

    View details for Web of Science ID 000358792000001

    View details for PubMedCentralID PMC4517382

  • MADD-4/Punctin and Neurexin Organize C. elegans GABAergic Postsynapses through Neuroligin. Neuron Maro, G. S., Gao, S., Olechwier, A. M., Hung, W. L., Liu, M., Özkan, E., Zhen, M., Shen, K. 2015; 86 (6): 1420-1432

    Abstract

    At synapses, the presynaptic release machinery is precisely juxtaposed to the postsynaptic neurotransmitter receptors. We studied the molecular mechanisms underlying this exquisite alignment at the C. elegans inhibitory synapses. We found that the sole C. elegans neuroligin homolog, NLG-1, localizes specifically at GABAergic postsynapses and is required for clustering the GABAA receptor UNC-49. Two presynaptic factors, Punctin/MADD-4, an ADAMTS-like extracellular protein, and neurexin/NRX-1, act partially redundantly to recruit NLG-1 to synapses. In the absence of both MADD-4 and NRX-1, NLG-1 and GABAA receptors fail to cluster, and GABAergic synaptic transmission is severely compromised. Biochemically, we detect an interaction between MADD-4 and NLG-1, as well as between MADD-4 and NRX-1. Interestingly, the presence of NRX-1 potentiates binding between Punctin/MADD-4 and NLG-1, suggestive of a tripartite receptor ligand complex. We propose that presynaptic terminals induce postsynaptic receptor clustering through the action of both secreted ECM proteins and trans-synaptic adhesion complexes.

    View details for DOI 10.1016/j.neuron.2015.05.015

    View details for PubMedID 26028574

  • The unfolded protein response is required for dendrite morphogenesis ELIFE Wei, X., Howell, A. S., Dong, X., Taylor, C. A., Cooper, R. C., Zhang, J., Zou, W., Sherwood, D. R., Shen, K. 2015; 4

    Abstract

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors.

    View details for DOI 10.7554/eLife.06963

    View details for Web of Science ID 000357338000001

    View details for PubMedID 26052671

    View details for PubMedCentralID PMC4484204

  • Sarcomeres Pattern Proprioceptive Sensory Dendritic Endings through UNC-52/Perlecan in C. elegans DEVELOPMENTAL CELL Liang, X., Dong, X., Moerman, D. G., Shen, K., Wang, X. 2015; 33 (4): 388-400

    Abstract

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan UNC-52/Perlecan linked the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis, and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites.

    View details for DOI 10.1016/j.devcel.2015.03.010

    View details for Web of Science ID 000355151900005

    View details for PubMedID 25982673

  • Parkinson's Disease Genes VPS35 and EIF4G1 Interact Genetically and Converge on a-Synuclein. Neuron Dhungel, N., Eleuteri, S., Li, L., Kramer, N. J., Chartron, J. W., Spencer, B., Kosberg, K., Fields, J. A., Stafa, K., Adame, A., Lashuel, H., Frydman, J., Shen, K., Masliah, E., Gitler, A. D. 2015; 85 (1): 76-87

    Abstract

    Parkinson's disease (PD) is a common neurodegenerative disorder. Functional interactions between some PD genes, like PINK1 and parkin, have been identified, but whether other ones interact remains elusive. Here we report an unexpected genetic interaction between two PD genes, VPS35 and EIF4G1. We provide evidence that EIF4G1 upregulation causes defects associated with protein misfolding. Expression of a sortilin protein rescues these defects, downstream of VPS35, suggesting a potential role for sortilins in PD. We also show interactions between VPS35, EIF4G1, and α-synuclein, a protein with a key role in PD. We extend our findings from yeast to an animal model and show that these interactions are conserved in neurons and in transgenic mice. Our studies reveal unexpected genetic and functional interactions between two seemingly unrelated PD genes and functionally connect them to α-synuclein pathobiology in yeast, worms, and mouse. Finally, we provide a resource of candidate PD genes for future interrogation.

    View details for DOI 10.1016/j.neuron.2014.11.027

    View details for PubMedID 25533483

    View details for PubMedCentralID PMC4289081

  • Intrinsic and Extrinsic Mechanisms of Dendritic Morphogenesis ANNUAL REVIEW OF PHYSIOLOGY, VOL 77 Dong, X., Shen, K., Buelow, H. E. 2015; 77: 271-300

    Abstract

    The complex, branched morphology of dendrites is a cardinal feature of neurons and has been used as a criterion for cell type identification since the beginning of neurobiology. Regulated dendritic outgrowth and branching during development form the basis of receptive fields for neurons and are essential for the wiring of the nervous system. The cellular and molecular mechanisms of dendritic morphogenesis have been an intensely studied area. In this review, we summarize the major experimental systems that have contributed to our understandings of dendritic development as well as the intrinsic and extrinsic mechanisms that instruct the neurons to form cell type-specific dendritic arbors.

    View details for DOI 10.1146/annurev-physiol-021014-071746

    View details for Web of Science ID 000350992800014

    View details for PubMedID 25386991

  • The unfolded protein response is required for dendrite morphogenesis. eLife Wei, X., Howell, A. S., Dong, X., Taylor, C. A., Cooper, R. C., Zhang, J., Zou, W., Sherwood, D. R., Shen, K. 2015; 4

    Abstract

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors.

    View details for DOI 10.7554/eLife.06963

    View details for PubMedID 26052671

    View details for PubMedCentralID PMC4484204

  • Axon and dendritic trafficking CURRENT OPINION IN NEUROBIOLOGY Maeder, C. I., Shen, K., Hoogenraad, C. C. 2014; 27: 165-170

    Abstract

    Neuronal trafficking is crucial to the formation and dynamics of presynaptic and postsynaptic structures and the development and maintenance of axonal and dendritic processes. The mechanism for delivering specific organelles and synaptic molecules in axons and dendrites primarily depends on molecular motor proteins that move along the cytoskeleton. Adaptor proteins, regulatory molecules and local signaling pathways provide additional layers of specificity and control over bidirectional movement, polarized transport and cargo delivery. Here we review recent advances and emerging concepts related to the transport machinery of crucial neuronal components, such as mitochondria and presynaptic cargoes, and the mechanisms that modulate their polarized axo-dendritic sorting and synaptic delivery.

    View details for DOI 10.1016/j.conb.2014.03.015

    View details for Web of Science ID 000341220400024

    View details for PubMedID 24762653

  • In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic Maeder, C. I., San-Miguel, A., Wu, E. Y., Lu, H., Shen, K. 2014; 15 (3): 273-291

    Abstract

    During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron-wide time-lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi-directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC-104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady-state SVP distributions. Furthermore, detailed dissection of speed distributions for wild-type and unc-104/kif1a mutant animals revealed an unexpected role for UNC-104/KIF1A in dendritic SVP trafficking.

    View details for DOI 10.1111/tra.12142

    View details for PubMedID 24320232

  • Extracellular Architecture of the SYG-1/SYG-2 Adhesion Complex Instructs Synaptogenesis. Cell Ozkan, E., Chia, P. H., Wang, R. R., Goriatcheva, N., Borek, D., Otwinowski, Z., Walz, T., Shen, K., Garcia, K. C. 2014; 156 (3): 482-494

    Abstract

    SYG-1 and SYG-2 are multipurpose cell adhesion molecules (CAMs) that have evolved across all major animal taxa to participate in diverse physiological functions, ranging from synapse formation to formation of the kidney filtration barrier. In the crystal structures of several SYG-1 and SYG-2 orthologs and their complexes, we find that SYG-1 orthologs homodimerize through a common, bispecific interface that similarly mediates an unusual orthogonal docking geometry in the heterophilic SYG-1/SYG-2 complex. C. elegans SYG-1's specification of proper synapse formation in vivo closely correlates with the heterophilic complex affinity, which appears to be tuned for optimal function. Furthermore, replacement of the interacting domains of SYG-1 and SYG-2 with those from CAM complexes that assume alternative docking geometries or the introduction of segmental flexibility compromised synaptic function. These results suggest that SYG extracellular complexes do not simply act as "molecular velcro" and that their distinct structural features are important in instructing synaptogenesis. PAPERFLICK:

    View details for DOI 10.1016/j.cell.2014.01.004

    View details for PubMedID 24485456

  • Local F-actin Network Links Synapse Formation and Axon Branching CELL Chia, P. H., Chen, B., Li, P., Rosen, M. K., Shen, K. 2014; 156 (1-2): 208-220

    Abstract

    Axonal branching and synapse formation are tightly linked developmental events during the establishment of synaptic circuits. Newly formed synapses promote branch initiation and stability. However, little is known about molecular mechanisms that link these two processes. Here, we show that local assembly of an F-actin cytoskeleton at nascent presynaptic sites initiates both synapse formation and axon branching. We further find that assembly of the F-actin network requires a direct interaction between the synaptic cell adhesion molecule SYG-1 and a key regulator of actin cytoskeleton, the WVE-1/WAVE regulatory complex (WRC). SYG-1 cytoplasmic tail binds to the WRC using a consensus WRC interacting receptor sequence (WIRS). WRC mutants or mutating the SYG-1 WIRS motif leads to loss of local F-actin, synaptic material, and axonal branches. Together, these data suggest that synaptic adhesion molecules, which serve as a necessary component for both synaptogenesis and axonal branch formation, directly regulate subcellular actin cytoskeletal organization.

    View details for DOI 10.1016/j.cell.2013.12.009

    View details for Web of Science ID 000329912200022

    View details for PubMedID 24439377

  • PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife Richardson, C. E., Spilker, K. A., Cueva, J. G., Perrino, J., Goodman, M. B., Shen, K. 2014; 3

    Abstract

    In neuronal processes, microtubules (MTs) provide structural support and serve as tracks for molecular motors. While it is known that neuronal MTs are more stable than MTs in non-neuronal cells, the molecular mechanisms underlying this stability are not fully understood. In this study, we used live fluorescence microscopy to show that the C. elegans CAMSAP protein PTRN-1 localizes to puncta along neuronal processes, stabilizes MT foci, and promotes MT polymerization in neurites. Electron microscopy revealed that ptrn-1 null mutants have fewer MTs and abnormal MT organization in the PLM neuron. Animals grown with a MT depolymerizing drug caused synthetic defects in neurite branching in the absence of ptrn-1 function, indicating that PTRN-1 promotes MT stability. Further, ptrn-1 null mutants exhibited aberrant neurite morphology and synaptic vesicle localization that is partially dependent on dlk-1. Our results suggest that PTRN-1 represents an important mechanism for promoting MT stability in neurons. DOI: http://dx.doi.org/10.7554/eLife.01498.001.

    View details for DOI 10.7554/eLife.01498

    View details for PubMedID 24569477

  • Cellular and molecular mechanisms of synaptic specificity. Annual review of cell and developmental biology Yogev, S., Shen, K. 2014; 30: 417-437

    Abstract

    Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.

    View details for DOI 10.1146/annurev-cellbio-100913-012953

    View details for PubMedID 25150010

  • Two Wnts Instruct Topographic Synaptic Innervation in C. elegans. Cell reports Mizumoto, K., Shen, K. 2013; 5 (2): 389-396

    Abstract

    Gradients of topographic cues play essential roles in the organization of sensory systems by guiding axonal growth cones. Little is known about whether there are additional mechanisms for precise topographic mapping of synaptic connections. Whereas the C. elegans DA8 and DA9 neurons have similar axonal trajectories, their synapses are positioned in distinct but adjacent domains in the anterior-posterior axis. We found that two Wnts, LIN-44 and EGL-20, are responsible for this spatial organization of synapses. Both Wnts form putative posterior-high, anterior-low gradients. The posteriorly expressed LIN-44 inhibits synapse formation in both DA9 and DA8, and creates a synapse-free domain on both axons via LIN-17 /Frizzled. EGL-20, a more anteriorly expressed Wnt, inhibits synapse formation through MIG-1/Frizzled, which is expressed in DA8 but not in DA9. The Wnt-Frizzled specificity and selective Frizzled expression dictate the stereotyped, topographic positioning of synapses between these two neurons.

    View details for DOI 10.1016/j.celrep.2013.09.011

    View details for PubMedID 24139806

  • An Extracellular Adhesion Molecule Complex Patterns Dendritic Branching and Morphogenesis CELL Dong, X., Liu, O. W., Howell, A. S., Shen, K. 2013; 155 (2): 296-307

    Abstract

    Robust dendrite morphogenesis is a critical step in the development of reproducible neural circuits. However, little is known about the extracellular cues that pattern complex dendrite morphologies. In the model nematode Caenorhabditis elegans, the sensory neuron PVD establishes stereotypical, highly branched dendrite morphology. Here, we report the identification of a tripartite ligand-receptor complex of membrane adhesion molecules that is both necessary and sufficient to instruct spatially restricted growth and branching of PVD dendrites. The ligand complex SAX-7/L1CAM and MNR-1 function at defined locations in the surrounding hypodermal tissue, whereas DMA-1 acts as the cognate receptor on PVD. Mutations in this complex lead to dramatic defects in the formation, stabilization, and organization of the dendritic arbor. Ectopic expression of SAX-7 and MNR-1 generates a predictable, unnaturally patterned dendritic tree in a DMA-1-dependent manner. Both in vivo and in vitro experiments indicate that all three molecules are needed for interaction.

    View details for DOI 10.1016/j.cell.2013.08.059

    View details for Web of Science ID 000325719800008

    View details for PubMedID 24120131

  • Intramolecular regulation of presynaptic scaffold protein SYD-2/liprin-alpha MOLECULAR AND CELLULAR NEUROSCIENCE Chia, P. H., Patel, M. R., Wagner, O. I., Klopfenstein, D. R., Shen, K. 2013; 56: 76-84

    Abstract

    SYD-2/liprin-α is a multi-domain protein that associates with and recruits multiple active zone molecules to form presynaptic specializations. Given SYD-2's critical role in synapse formation, its synaptogenic ability is likely tightly regulated. However, mechanisms that regulate SYD-2 function are poorly understood. In this study, we provide evidence that SYD-2's function may be regulated by interactions between its coiled-coil (CC) domains and sterile α-motif (SAM) domains. We show that the N-terminal CC domains are necessary and sufficient to assemble functional synapses while C-terminal SAM domains are not, suggesting that the CC domains are responsible for the synaptogenic activity of SYD-2. Surprisingly, syd-2 alleles with single amino acid mutations in the SAM domain show strong loss of function phenotypes, suggesting that SAM domains also play an important role in SYD-2's function. A previously characterized syd-2 gain-of-function mutation within the CC domains is epistatic to the loss-of-function mutations in the SAM domain. In addition, yeast two-hybrid analysis showed interactions between the CC and SAM domains. Thus, the data is consistent with a model where the SAM domains regulate the CC domain-dependent synaptogenic activity of SYD-2. Taken together, our study provides new mechanistic insights into how SYD-2's activity may be modulated to regulate synapse formation during development.

    View details for DOI 10.1016/j.mcn.2013.03.004

    View details for Web of Science ID 000325834100008

    View details for PubMedID 23541703

  • Interaxonal Interaction Defines Tiled Presynaptic Innervation in C. elegans NEURON Mizumoto, K., Shen, K. 2013; 77 (4): 655-666

    Abstract

    Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. Although axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain-a phenomenon we term synaptic tiling. Using DA8 and DA9 motoneurons, we found that the synaptic tiling requires the PlexinA4 homolog, PLX-1, and two transmembrane semaphorins. In the plexin or semaphorin mutants, synaptic domains from both neurons expand and overlap with each other without guidance defects. In a semaphorin-dependent manner, PLX-1 is concentrated at the synapse-free axonal segment, delineating the tiling border. Furthermore, plexin inhibits presynapse formation by suppressing synaptic F-actin through its cytoplasmic GTPase-activating protein (GAP) domain. Hence, contact-dependent, intra-axonal plexin signaling specifies synaptic circuits by inhibiting synapse formation at the subcellular loci. VIDEO ABSTRACT:

    View details for DOI 10.1016/j.neuron.2012.12.031

    View details for Web of Science ID 000315561300009

    View details for PubMedID 23439119

  • Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife Yan, J., Chao, D. L., Toba, S., Koyasako, K., Yasunaga, T., Hirotsune, S., Shen, K. 2013; 2

    Abstract

    In neurons, microtubules (MTs) span the length of both axons and dendrites, and the molecular motors use these intracellular 'highways' to transport diverse cargo to the appropriate subcellular locations. Whereas axonal MTs are organized such that the plus-end is oriented out from the cell body, dendrites exhibit a mixed MTs polarity containing both minus-end-out and plus-end-out MTs. The molecular mechanisms underlying this differential organization, as well as its functional significance, are unknown. Here, we show that kinesin-1 is critical in establishing the characteristic minus-end-out MT organization of the dendrite in vivo. In unc-116 (kinesin-1/kinesin heavy chain) mutants, the dendritic MTs adopt an axonal-like plus-end-out organization. Kinesin-1 protein is able to cross-link anti-paralleled MTs in vitro. We propose that kinesin-1 regulates the dendrite MT polarity through directly gliding the plus-end-out MTs out of the dendrite using both the motor domain and the C-terminal MT-binding domain. DOI:http://dx.doi.org/10.7554/eLife.00133.001.

    View details for DOI 10.7554/eLife.00133

    View details for PubMedID 23482306

  • LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. eLife Li, P., Collins, K. M., Koelle, M. R., Shen, K. 2013; 2

    Abstract

    The diverse cell types and the precise synaptic connectivity between them are the cardinal features of the nervous system. Little is known about how cell fate diversification is linked to synaptic target choices. Here we investigate how presynaptic neurons select one type of muscles, vm2, as a synaptic target and form synapses on its dendritic spine-like muscle arms. We found that the Notch-Delta pathway was required to distinguish target from non-target muscles. APX-1/Delta acts in surrounding cells including the non-target vm1 to activate LIN-12/Notch in the target vm2. LIN-12 functions cell-autonomously to up-regulate the expression of UNC-40/DCC and MADD-2 in vm2, which in turn function together to promote muscle arm formation and guidance. Ectopic expression of UNC-40/DCC in non-target vm1 muscle is sufficient to induce muscle arm extension from these cells. Therefore, the LIN-12/Notch signaling specifies target selection by selectively up-regulating guidance molecules and forming muscle arms in target cells. DOI:http://dx.doi.org/10.7554/eLife.00378.001.

    View details for DOI 10.7554/eLife.00378

    View details for PubMedID 23539368

  • WNTs in synapse formation and neuronal circuitry EMBO JOURNAL Park, M., Shen, K. 2012; 31 (12): 2697-2704

    Abstract

    Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.

    View details for DOI 10.1038/emboj.2012.145

    View details for Web of Science ID 000305299200004

    View details for PubMedID 22617419

  • Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans NATURE METHODS Wei, X., Potter, C. J., Luo, L., Shen, K. 2012; 9 (4): 391-U105

    Abstract

    We established a transcription-based binary gene expression system in Caenorhabditis elegans using the recently developed Q system. This system, derived from genes in Neurospora crassa, uses the transcriptional activator QF to induce the expression of target genes. Activation can be efficiently suppressed by the transcriptional repressor QS, and suppression can be relieved by the nontoxic small molecule quinic acid. We used QF, QS and quinic acid to achieve temporal and spatial control of transgene expression in various tissues in C. elegans. We also developed a split Q system, in which we separated QF into two parts encoding its DNA-binding and transcription-activation domains. Each domain showed negligible transcriptional activity when expressed alone, but expression of both reconstituted QF activity, providing additional combinatorial power to control gene expression.

    View details for DOI 10.1038/NMETH.1929

    View details for Web of Science ID 000302218500024

    View details for PubMedID 22406855

  • Caenorhabditis elegans Muscleblind homolog mbl-1 functions in neurons to regulate synapse formation NEURAL DEVELOPMENT Spilker, K. A., Wang, G. J., Tugizova, M. S., Shen, K. 2012; 7

    Abstract

    The sequestration of Muscleblind splicing regulators results in myotonic dystrophy. Previous work on Muscleblind has largely focused on its roles in muscle development and maintenance due to the skeletal and cardiac muscle degeneration phenotype observed in individuals with the disorder. However, a number of reported nervous system defects suggest that Muscleblind proteins function in other tissues as well.We have identified a mutation in the Caenorhabditis elegans homolog of Muscleblind, mbl-1, that is required for proper formation of neuromuscular junction (NMJ) synapses. mbl-1 mutants exhibit selective loss of the most distal NMJ synapses in a C. elegans motorneuron, DA9, visualized using the vesicle-associated protein RAB-3, as well as the active zone proteins SYD-2/liprin-α and UNC-10/Rim. The proximal NMJs appear to have normal pre- and postsynaptic specializations. Surprisingly, expressing a mbl-1 transgene in the presynaptic neuron is sufficient to rescue the synaptic defect, while muscle expression has no effect. Consistent with this result, mbl-1 is also expressed in neurons.Based on these results, we conclude that in addition to its functions in muscle, the Muscleblind splice regulators also function in neurons to regulate synapse formation.

    View details for DOI 10.1186/1749-8104-7-7

    View details for Web of Science ID 000304541600001

    View details for PubMedID 22314215

    View details for PubMedCentralID PMC3353867

  • NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins NATURE NEUROSCIENCE Chia, P. H., Patel, M. R., Shen, K. 2012; 15 (2): 234-242

    Abstract

    During synaptogenesis, macromolecular protein complexes assemble at the pre- and postsynaptic membrane. Extensive literature identifies many transmembrane molecules sufficient to induce synapse formation and several intracellular scaffolding molecules responsible for assembling active zones and recruiting synaptic vesicles. However, little is known about the molecular mechanisms coupling membrane receptors to active zone molecules during development. Using Caenorhabditis elegans, we identify an F-actin network present at nascent presynaptic terminals and required for presynaptic assembly. We unravel a sequence of events whereby specificity-determining adhesion molecules define the location of developing synapses and locally assemble F-actin. Next, the adaptor protein NAB-1 (neurabin) binds to F-actin and recruits active zone proteins SYD-1 and SYD-2 (liprin-α) by forming a tripartite complex. NAB-1 localizes transiently to synapses during development and is required for presynaptic assembly. Altogether, we identify a role for the actin cytoskeleton during presynaptic development and characterize a molecular pathway whereby NAB-1 links synaptic partner recognition to active zone assembly.

    View details for DOI 10.1038/nn.2991

    View details for Web of Science ID 000299603500014

    View details for PubMedID 22231427

  • UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting NATURE NEUROSCIENCE Maniar, T. A., Kaplan, M., Wang, G. J., Shen, K., Wei, L., Shaw, J. E., Koushika, S. P., Bargmann, C. I. 2012; 15 (1): 48-U66

    View details for DOI 10.1038/nn.2970

    View details for Web of Science ID 000298414400013

  • The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans NATURE NEUROSCIENCE Liu, O. W., Shen, K. 2012; 15 (1): 57-U74

    View details for DOI 10.1038/nn.2978

    View details for Web of Science ID 000298414400014

  • Sensory Transduction Channel Subunits, tax-4 and tax-2, Modify Presynaptic Molecular Architecture in C-elegans PLOS ONE Hellman, A. B., Shen, K. 2011; 6 (9)

    Abstract

    During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV) markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses.

    View details for DOI 10.1371/journal.pone.0024562

    View details for Web of Science ID 000294802500060

    View details for PubMedID 21915351

  • Semaphorin Breaks Symmetry NEURON Howell, A. S., Shen, K. 2011; 71 (3): 381-382

    Abstract

    Axon-dendrite polarity is likely instructed by extrinsic cues in the developing nervous system, though the mechanisms governing this process remain to be fully elucidated. In this issue of Neuron, Shelly et al. show that the axon guidance cue Semaphorin 3A can promote dendrite growth by inhibiting axon specification.

    View details for DOI 10.1016/j.neuron.2011.07.020

    View details for Web of Science ID 000293991700001

    View details for PubMedID 21835334

  • Neuronal Polarity in C. elegans DEVELOPMENTAL NEUROBIOLOGY Ou, C., Shen, K. 2011; 71 (6): 554-566

    Abstract

    Neuronal polarity sets the foundation for information processing and signal transmission within neural networks. However, fundamental question of how a neuron develops and maintains structurally and functionally distinct processes, axons and dendrites, is still an unclear. The simplicity and availability of practical genetic tools makes C. elegans as an ideal model to study neuronal polarity in vivo. In recent years, new studies have identified critical polarity molecules that function at different stages of neuronal polarization in C. elegans. This review focuses on how neurons guided by extrinsic cues, break symmetry, and subsequently recruit intracellular molecules to establish and maintain axon-dendrite polarity in vivo.

    View details for DOI 10.1002/dneu.20858

    View details for Web of Science ID 000291215100012

    View details for PubMedID 21557505

  • CYY-1/Cyclin Y and CDK-5 Differentially Regulate Synapse Elimination and Formation for Rewiring Neural Circuits NEURON Park, M., Watanabe, S., Poon, V. V., Ou, C., Jorgensen, E. M., Shen, K. 2011; 70 (4): 742-757

    Abstract

    The assembly and maturation of neural circuits require a delicate balance between synapse formation and elimination. The cellular and molecular mechanisms that coordinate synaptogenesis and synapse elimination are poorly understood. In C. elegans, DD motoneurons respecify their synaptic connectivity during development by completely eliminating existing synapses and forming new synapses without changing cell morphology. Using loss- and gain-of-function genetic approaches, we demonstrate that CYY-1, a cyclin box-containing protein, drives synapse removal in this process. In addition, cyclin-dependent kinase-5 (CDK-5) facilitates new synapse formation by regulating the transport of synaptic vesicles to the sites of synaptogenesis. Furthermore, we show that coordinated activation of UNC-104/Kinesin3 and Dynein is required for patterning newly formed synapses. During the remodeling process, presynaptic components from eliminated synapses are recycled to new synapses, suggesting that signaling mechanisms and molecular motors link the deconstruction of existing synapses and the assembly of new synapses during structural synaptic plasticity.

    View details for DOI 10.1016/j.neuron.2011.04.002

    View details for Web of Science ID 000292754300015

    View details for PubMedID 21609829

  • Genetic dissection of synaptic specificity CURRENT OPINION IN NEUROBIOLOGY Maeder, C. I., Shen, K. 2011; 21 (1): 93-99

    Abstract

    Nervous systems are built of a myriad of neurons connected by an even larger number of synapses. While it has been long known that neurons specifically select their synaptic partners among many possible choices during development, we only begin to understand how they make those decisions. Recent findings have started to elucidate the molecular mechanisms underlying synaptic target selection including positive as well as negative cues from synaptic partners, intermediate targets and surrounding tissues. Furthermore, emerging evidence suggests that synaptic connections are not only formed among specific sets of neurons, but also targeted to specific subcellular domains. Finally, spatial and temporal transcriptional regulation of these molecular cues represents an additional, versatile mechanism to provide wiring specificity.

    View details for DOI 10.1016/j.conb.2010.10.004

    View details for Web of Science ID 000288876100013

    View details for PubMedID 21087855

  • UNC-6 and UNC-40 promote dendritic growth through PAR-4 in Caenorhabditis elegans neurons NATURE NEUROSCIENCE Teichmann, H. M., Shen, K. 2011; 14 (2): 165-U364

    Abstract

    Axons navigating through the developing nervous system are instructed by external attractive and repulsive cues. Emerging evidence suggests the same cues control dendrite development, but it is not understood how they differentially instruct axons and dendrites. We studied a C. elegans motor neuron whose axon and dendrite adopt different trajectories and lengths. We found that the guidance cue UNC-6 (Netrin) is required for both axon and dendrite development. Its repulsive receptor UNC-5 repelled the axon from the ventral cell body, whereas the attractive receptor UNC-40 (DCC) was dendritically enriched and promotes antero-posterior dendritic growth. Although the endogenous ventrally secreted UNC-6 instructs axon guidance, dorsal or even membrane-tethered UNC-6 could support dendrite development. Unexpectedly, the serine-threonine kinase PAR-4 (LKB1) was selectively required for the activity of the UNC-40 pathway in dendrite outgrowth. These data suggest that axon and dendrite of one neuron interpret common environmental cues with different receptors and downstream signaling pathways.

    View details for DOI 10.1038/nn.2717

    View details for Web of Science ID 000286595400013

    View details for PubMedID 21186357

  • Functional Organization of a Neural Network for Aversive Olfactory Learning in Caenorhabditis elegans NEURON Ha, H., Hendricks, M., Shen, Y., Gabel, C. V., Fang-Yen, C., Qin, Y., Colon-Ramos, D., Shen, K., Samuel, A. D., Zhang, Y. 2010; 68 (6): 1173-1186

    Abstract

    Many animals use their olfactory systems to learn to avoid dangers, but how neural circuits encode naive and learned olfactory preferences, and switch between those preferences, is poorly understood. Here, we map an olfactory network, from sensory input to motor output, which regulates the learned olfactory aversion of Caenorhabditis elegans for the smell of pathogenic bacteria. Naive animals prefer smells of pathogens but animals trained with pathogens lose this attraction. We find that two different neural circuits subserve these preferences, with one required for the naive preference and the other specifically for the learned preference. Calcium imaging and behavioral analysis reveal that the naive preference reflects the direct transduction of the activity of olfactory sensory neurons into motor response, whereas the learned preference involves modulations to signal transduction to downstream neurons to alter motor response. Thus, two different neural circuits regulate a behavioral switch between naive and learned olfactory preferences.

    View details for DOI 10.1016/j.neuron.2010.11.025

    View details for Web of Science ID 000286128000015

    View details for PubMedID 21172617

    View details for PubMedCentralID PMC3038580

  • GRLD-1 regulates cell-wide abundance of glutamate receptor through post-transcriptional regulation NATURE NEUROSCIENCE Wang, G. J., Kang, L., Kim, J. E., Maro, G. S., Xu, X. Z., Shen, K. 2010; 13 (12): 1489-U71

    Abstract

    AMPA receptors mediate most of the fast postsynaptic response at glutamatergic synapses. The abundance of AMPA receptors in neurons and at postsynaptic membranes is tightly regulated. It has been suggested that changes in synaptic AMPA receptor levels are an important regulatory event in synaptic plasticity and learning and memory. Although the local, synapse-specific regulation of AMPA receptors has been intensely studied, global, cell-wide control is less well understood. Using a forward genetic approach, we identified glutamate receptor level decreased-1 (GRLD-1), a putative RNA-binding protein that was required for efficient production of GLR-1 in the AVE interneurons in the nematode Caenorhabditis elegans. In grld-1 mutants, GLR-1 levels were markedly reduced. Consistently, glutamate-induced currents in AVE were diminished and glr-1-dependent nose-touch avoidance behavior was defective in grld-1 mutants. We propose that this evolutionarily conserved family of proteins controls the abundance of GLR-1 by regulating glr-1 transcript splicing.

    View details for DOI 10.1038/nn.2667

    View details for Web of Science ID 000284525800013

    View details for PubMedID 21037582

  • Setting up presynaptic structures at specific positions CURRENT OPINION IN NEUROBIOLOGY Ou, C., Shen, K. 2010; 20 (4): 489-493

    Abstract

    Precise formation of presynaptic structures at specific loci is critical for correctly wiring neuronal circuits. Recent findings have gradually revealed how essential cues from different sources inform the axon to define the presynaptic domain and to choose its postsynaptic target. Here, we review key molecular regulators which mediate instructive or repellent signals from multiple sources including the target cells, local guidepost cells, and distal guiding tissues.

    View details for DOI 10.1016/j.conb.2010.04.011

    View details for Web of Science ID 000282560900013

    View details for PubMedID 20471244

  • An Arf-like Small G Protein, ARL-8, Promotes the Axonal Transport of Presynaptic Cargoes by Suppressing Vesicle Aggregation NEURON Klassen, M. P., Wu, Y. E., Maeder, C. I., Nakae, I., Cueva, J. G., Lehrman, E. K., Tada, M., Gengyo-Ando, K., Wang, G. J., Goodman, M., Mitani, S., Kontani, K., Katada, T., Shen, K. 2010; 66 (5): 710-723

    Abstract

    Presynaptic assembly requires the packaging of requisite proteins into vesicular cargoes in the cell soma, their long-distance microtubule-dependent transport down the axon, and, finally, their reconstitution into functional complexes at prespecified sites. Despite the identification of several molecules that contribute to these events, the regulatory mechanisms defining such discrete states remain elusive. We report the characterization of an Arf-like small G protein, ARL-8, required during this process. arl-8 mutants prematurely accumulate presynaptic cargoes within the proximal axon of several neuronal classes, with a corresponding failure to assemble presynapses distally. This proximal accumulation requires the activity of several molecules known to catalyze presynaptic assembly. Dynamic imaging studies reveal that arl-8 mutant vesicles exhibit an increased tendency to form immotile aggregates during transport. Together, these results suggest that arl-8 promotes a trafficking identity for presynaptic cargoes, facilitating their efficient transport by repressing premature self-association.

    View details for DOI 10.1016/j.neuron.2010.04.033

    View details for Web of Science ID 000278941900011

    View details for PubMedID 20547129

    View details for PubMedCentralID PMC3168544

  • Two Cyclin-Dependent Kinase Pathways Are Essential for Polarized Trafficking of Presynaptic Components CELL Ou, C., Poon, V. Y., Maeder, C. I., Watanabe, S., Lehrman, E. K., Fu, A. K., Park, M., Fu, W., Jorgensen, E. M., Ip, N. Y., Shen, K. 2010; 141 (5): 846-858

    Abstract

    Polarized trafficking of synaptic proteins to axons and dendrites is crucial to neuronal function. Through forward genetic analysis in C. elegans, we identified a cyclin (CYY-1) and a cyclin-dependent Pctaire kinase (PCT-1) necessary for targeting presynaptic components to the axon. Another cyclin-dependent kinase, CDK-5, and its activator p35, act in parallel to and partially redundantly with the CYY-1/PCT-1 pathway. Synaptic vesicles and active zone proteins mostly mislocalize to dendrites in animals defective for both PCT-1 and CDK-5 pathways. Unlike the kinesin-3 motor, unc-104/Kif1a mutant, cyy-1 cdk-5 double mutants have no reduction in anterogradely moving synaptic vesicle precursors (SVPs) as observed by dynamic imaging. Instead, the number of retrogradely moving SVPs is dramatically increased. Furthermore, this mislocalization defect is suppressed by disrupting the retrograde motor, the cytoplasmic dynein complex. Thus, PCT-1 and CDK-5 pathways direct polarized trafficking of presynaptic components by inhibiting dynein-mediated retrograde transport and setting the balance between anterograde and retrograde motors.

    View details for DOI 10.1016/j.cell.2010.04.011

    View details for Web of Science ID 000278132900019

    View details for PubMedID 20510931

    View details for PubMedCentralID PMC3168554

  • Guidance Molecules in Synapse Formation and Plasticity COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY Shen, K., Cowan, C. W. 2010; 2 (4)

    Abstract

    A major goal of modern neuroscience research is to understand the cellular and molecular processes that control the formation, function, and remodeling of chemical synapses. In this article, we discuss the numerous studies that implicate molecules initially discovered for their functions in axon guidance as critical regulators of synapse formation and plasticity. Insights from these studies have helped elucidate basic principles of synaptogenesis, dendritic spine formation, and structural and functional synapse plasticity. In addition, they have revealed interesting dual roles for proteins and cellular mechanisms involved in both axon guidance and synaptogenesis. Much like the dual involvement of morphogens in early cell fate induction and axon guidance, many guidance-related molecules continue to play active roles in controlling the location, number, shape, and strength of neuronal synapses during development and throughout the lifetime of the organism. This article summarizes key findings that link axon guidance molecules to specific aspects of synapse formation and plasticity and discusses the emerging relationship between the molecular and cellular mechanisms that control both axon guidance and synaptogenesis.

    View details for DOI 10.1101/cshperspect.a001842

    View details for Web of Science ID 000279882300010

    View details for PubMedID 20452946

  • Molecular mechanisms of synaptic specificity MOLECULAR AND CELLULAR NEUROSCIENCE Margeta, M. A., Shen, K. 2010; 43 (3): 261-267

    Abstract

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity.

    View details for DOI 10.1016/j.mcn.2009.11.009

    View details for Web of Science ID 000275141700001

    View details for PubMedID 19969086

  • Genetics and Cell Biology of Building Specific Synaptic Connectivity ANNUAL REVIEW OF NEUROSCIENCE, VOL 33 Shen, K., Scheiffele, P. 2010; 33: 473-507

    Abstract

    The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.

    View details for DOI 10.1146/annurev.neuro.051508.135302

    View details for Web of Science ID 000283330200020

    View details for PubMedID 20367446

  • Neuronal and glial cell biology Editorial overview CURRENT OPINION IN NEUROBIOLOGY Brophy, P., Shen, K. 2009; 19 (5): 459-460

    View details for DOI 10.1016/j.conb.2009.10.013

    View details for Web of Science ID 000272922900001

    View details for PubMedID 19896829

  • Deal Breaker: Semaphorin and Specificity in the Spinal Stretch Reflex Circuit NEURON Maro, G. S., Shen, K., Cheng, H. 2009; 63 (1): 8-11

    Abstract

    Stretch reflex circuits are a prime example of wiring specificity in the vertebrate spinal cord. Homonymous sensory afferents and motoneurons typically form monosynaptic connections, while neurons innervating antagonistic or unrelated muscles do not. Pecho-Vrieseling et al. now show that the semaphorin Sema3E and its receptor Plexin-D1 prevent monosynaptic connectivity in the cutaneous maximus muscle stretch reflex circuit.

    View details for DOI 10.1016/j.neuron.2009.07.002

    View details for Web of Science ID 000268189900004

    View details for PubMedID 19607788

  • Neurite Extension: Starting at the Finish Line CELL Patel, M. R., Shen, K. 2009; 137 (2): 207-209

    Abstract

    The outgrowth of axons and dendrites from neuronal cell bodies to their appropriate targets is the canonical means of creating new processes. Heiman and Shaham (2009) now show that neuronal processes can also be made by anchoring dendrite tips at their target locations while the cell body pulls away, a process termed retrograde extension.

    View details for DOI 10.1016/j.cell.2009.04.001

    View details for Web of Science ID 000265456800012

    View details for PubMedID 19379686

  • Transient cell-cell interactions in neural circuit formation NATURE REVIEWS NEUROSCIENCE Chao, D. L., Ma, L., Shen, K. 2009; 10 (4): 262-271

    Abstract

    The wiring of the nervous system requires a complex orchestration of developmental events. Emerging evidence suggests that transient cell-cell interactions often serve as positional cues for axon guidance and synaptogenesis during the assembly of neural circuits. In contrast to the relatively stable cellular interactions between synaptic partners in mature circuits, these transient interactions involve cells that are not destined to be pre- or postsynaptic cells. Here we review the roles of these transient cell-cell interactions in a variety of developmental contexts and describe the mechanisms through which they organize neural connections.

    View details for DOI 10.1038/nrn2594

    View details for Web of Science ID 000264402500009

    View details for PubMedID 19300445

  • RSY-1 Is a Local Inhibitor of Presynaptic Assembly in C. elegans SCIENCE Patel, M. R., Shen, K. 2009; 323 (5920): 1500-1503

    Abstract

    As fundamental units of neuronal communication, chemical synapses are composed of presynaptic and postsynaptic specializations that form at specific locations with defined shape and size. Synaptic assembly must be tightly regulated to prevent overgrowth of the synapse size and number, but the molecular mechanisms that inhibit synapse assembly are poorly understood. We identified regulator of synaptogenesis-1 (RSY-1) as an evolutionarily conserved molecule that locally antagonized presynaptic assembly. The loss of RSY-1 in Caenorhabditis elegans led to formation of extra synapses and recruitment of excessive synaptic material to presynaptic sites. RSY-1 directly interacted with and negatively regulated SYD-2/liprin-alpha, a master assembly molecule that recruits numerous synaptic components to presynaptic sites. RSY-1 also bound and regulated SYD-1, a synaptic protein required for proper functioning of SYD-2. Thus, local inhibitory mechanisms govern synapse formation.

    View details for DOI 10.1126/science.1169025

    View details for Web of Science ID 000264101700047

    View details for PubMedID 19286562

    View details for PubMedCentralID PMC3087376

  • A beta-Catenin-Dependent Wnt Pathway Mediates Anteroposterior Axon Guidance in C. elegans Motor Neurons PLOS ONE Maro, G. S., Klassen, M. P., Shen, K. 2009; 4 (3)

    Abstract

    Wnts are secreted glycoproteins that regulate diverse aspects of development, including cell proliferation, cell fate specification and differentiation. More recently, Wnts have been shown to direct axon guidance in vertebrates, flies and worms. However, little is known about the intracellular signaling pathways downstream of Wnts in axon guidance.Here we show that the posterior C. elegans Wnt protein LIN-44 repels the axons of the adjacent D-type motor neurons by activating its receptor LIN-17/Frizzled on the neurons. Moreover, mutations in mig-5/Disheveled, gsk-3, pry-1/Axin, bar-1/beta-catenin and pop-1/TCF, also cause disrupted D-type axon pathfinding. Reduced BAR-1/beta-catenin activity in D-type axons leads to undergrowth of axons, while stabilization of BAR-1/beta-catenin in a lin-23/SCF(beta-TrCP) mutant results in an overextension phenotype.Together, our data provide evidence that Wnt-mediated axon guidance can be transduced through a beta-catenin-dependent pathway.

    View details for DOI 10.1371/journal.pone.0004690

    View details for Web of Science ID 000265490500009

    View details for PubMedID 19259273

  • The Curious Case of a Wandering Kinase: CaMKII Spreads the Wealth? NEURON Klassen, M. P., Shen, K. 2009; 61 (3): 331-332

    Abstract

    Calcium/calmodulin-dependent kinase II has been suggested to produce input-specific long-term potentiation of synaptic strength. This idea has been complicated by results from Rose, Jin, and Craig demonstrating that spatiotemporally restricted NMDA receptor excitation at contiguous synapses can result in the translocation of activated CaMKII throughout the dendritic arbor.

    View details for DOI 10.1016/j.neuron.2009.01.023

    View details for Web of Science ID 000263407500001

    View details for PubMedID 19217368

  • Clathrin adaptor AP-1 complex excludes multiple postsynaptic receptors from axons in C. elegans PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Margeta, M. A., Wang, G. J., Shen, K. 2009; 106 (5): 1632-1637

    Abstract

    Neurons are highly polarized cells with morphologically and molecularly distinct axonal and dendritic compartments. It is not well understood how postsynaptic receptors are selectively enriched in dendrites in vivo. We investigated the molecular mechanisms of dendritically polarized localization of a glutamate receptor, an acetylcholine receptor, and a ROR-type receptor tyrosine kinase in the interneuron RIA in C. elegans. We found that the clathrin adaptor AP-1 complex mu1 subunit UNC-101 functions cell autonomously to maintain the correct localization of these receptors in a dynamin-dependent manner. In unc-101 mutants, instead of being dendritically enriched, all 3 receptors are evenly distributed in the axonal and dendritic compartments. Surprisingly, UNC-101 predominantly localizes to the axonal compartment, suggesting a possible transcytosis model for the dendritic targeting of neurotransmitter receptors.

    View details for DOI 10.1073/pnas.0812078106

    View details for Web of Science ID 000263074600061

    View details for PubMedID 19164532

  • The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases BIOESSAYS Ding, M., Shen, K. 2008; 30 (11-12): 1075-1083

    Abstract

    The ubiquitin proteasome system is a potent regulatory mechanism used to control protein stability in numerous cellular processes, including neural development. Many neurodegenerative diseases are featured by the accumulation of UPS-associated proteins, suggesting the UPS dysfunction may be crucial for pathogenesis. Recent experiments have highlighted the UPS as a key player during synaptic development. Here we summarize recent discoveries centered on the role of the UPS in synapse remodeling and draw attention to the potential link between the synaptic UPS dysfunction and the pathology of neurodegenerative diseases.

    View details for DOI 10.1002/bies.20843

    View details for Web of Science ID 000260912800008

    View details for PubMedID 18937340

  • UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites NATURE Poon, V. Y., Klassen, M. P., Shen, K. 2008; 455 (7213): 669-U68

    Abstract

    Polarity is an essential feature of many cell types, including neurons that receive information from local inputs within their dendrites and propagate nerve impulses to distant targets through a single axon. It is generally believed that intrinsic structural differences between axons and dendrites dictate the polarized localization of axonal and dendritic proteins. However, whether extracellular cues also instruct this process in vivo has not been explored. Here we show that the axon guidance cue UNC-6/netrin and its receptor UNC-5 act throughout development to exclude synaptic vesicle and active zone proteins from the dendrite of the Caenorhabditis elegans motor neuron DA9, which is proximal to a source of UNC-6/netrin. In unc-6/netrin and unc-5 loss-of-function mutants, presynaptic components mislocalize to the DA9 dendrite. In addition, ectopically expressed UNC-6/netrin, acting through UNC-5, is sufficient to exclude endogenous synapses from adjacent subcellular domains within the DA9 axon. Furthermore, this anti-synaptogenic activity is interchangeable with that of LIN-44/Wnt despite being transduced through different receptors, suggesting that extracellular cues such as netrin and Wnts not only guide axon navigation but also regulate the polarized accumulation of presynaptic components through local exclusion.

    View details for DOI 10.1038/nature07291

    View details for Web of Science ID 000259639700048

    View details for PubMedID 18776887

  • Functional dissection of SYG-1 and SYG-2, cell adhesion molecules required for selective synaptogenesis in C-elegans MOLECULAR AND CELLULAR NEUROSCIENCE Chao, D. L., Shen, K. 2008; 39 (2): 248-257

    Abstract

    Cell adhesion molecules of the Immunoglobulin superfamily (IgCAMs) play diverse functions during neural development. Previously, we have identified SYG-1/Neph1 and SYG-2/Nephrin, IgCAMs necessary for synaptic specificity in Caenorhabditis elegans. Here, we conduct an in vivo structure-function analysis of SYG-1 and SYG-2 to identify domains of SYG-1 and SYG-2 necessary for heterophilic binding as well as synaptic specificity. We find the first Ig domain of SYG-1 and the first 5 Ig domains of SYG-2 are necessary and sufficient for their binding in vivo, as well as for synapse formation. We also find the SYG-2 cytoplasmic domain is required for SYG-2 subcellular trafficking, while the intracellular region of SYG-1 is required for synaptic function at earlier developmental stages, but is dispensable for later stages. This study defines the domain requirements for SYG-1/SYG-2 heterophilic binding and suggests that unknown SYG-1 extracellular interactors may play a role in SYG-1-mediated synaptic specificity.

    View details for DOI 10.1016/j.mcn.2008.07.001

    View details for Web of Science ID 000259874200012

    View details for PubMedID 18675916

  • Single-synapse ablation and long-term imaging in live C. elegans JOURNAL OF NEUROSCIENCE METHODS Allen, P. B., Sgro, A. E., Chao, D. L., Doepker, B. E., Edgar, J. S., Shen, K., Chiu, D. T. 2008; 173 (1): 20-26

    Abstract

    Synapses are individually operated, computational units for neural communication. To manipulate physically individual synapses in a living organism, we have developed a laser ablation technique for removing single synapses in live neurons in C. elegans that operates without apparent damage to the axon. As a complementary technique, we applied microfluidic immobilization of C. elegans to facilitate long-term fluorescence imaging and observation of neuronal development. With this technique, we directly demonstrated the existence of competition between developing synapses in the HSNL motor neuron.

    View details for DOI 10.1016/j.jneumeth.2008.05.007

    View details for Web of Science ID 000258740200003

    View details for PubMedID 18579213

    View details for PubMedCentralID PMC2535809

  • Cellular conductors: Glial cells as guideposts during neural circuit development PLOS BIOLOGY Colon-Ramos, D. A., Shen, K. 2008; 6 (4): 672-674

    View details for DOI 10.1371/journal.pbio.0060112

    View details for Web of Science ID 000255368600003

    View details for PubMedID 18447586

  • GFP reconstitution across synaptic partners (GRASP) defines cell contacts and Synapses in living nervous systems NEURON Feinberg, E. H., VanHoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., Bargmannl, C. I. 2008; 57 (3): 353-363

    Abstract

    The identification of synaptic partners is challenging in dense nerve bundles, where many processes occupy regions beneath the resolution of conventional light microscopy. To address this difficulty, we have developed GRASP, a system to label membrane contacts and synapses between two cells in living animals. Two complementary fragments of GFP are expressed on different cells, tethered to extracellular domains of transmembrane carrier proteins. When the complementary GFP fragments are fused to ubiquitous transmembrane proteins, GFP fluorescence appears uniformly along membrane contacts between the two cells. When one or both GFP fragments are fused to synaptic transmembrane proteins, GFP fluorescence is tightly localized to synapses. GRASP marks known synaptic contacts in C. elegans, correctly identifies changes in mutants with altered synaptic specificity, and can uncover new information about synaptic locations as confirmed by electron microscopy. GRASP may prove particularly useful for defining connectivity in complex nervous systems.

    View details for DOI 10.1016/j.neuron.2007.11.030

    View details for Web of Science ID 000253075300006

    View details for PubMedID 18255029

  • Building a synapse: lessons on synaptic specificity and presynaptic assembly from the nematode C-elegans CURRENT OPINION IN NEUROBIOLOGY Margeta, M. A., Shen, K., Grill, B. 2008; 18 (1): 69-76

    Abstract

    Synapses are specialized sites of cell contact that mediate information flow between neurons and their targets. Genetic screens in the nematode C. elegans have led to the discovery of a number of molecules required for synapse patterning and assembly. Recent studies have demonstrated the importance of guidepost cells in the positioning of presynaptic sites at specific locations along the axon. Interestingly, these guideposts can promote or inhibit synapse formation, and do so by utilizing transmembrane adhesion molecules or secreted factors that act over relatively larger distances. Once the decision of where to build a presynaptic terminal has been made, key molecules are recruited to assemble synaptic vesicles and active zone proteins at that site. Multiple steps of this process are regulated by ubiquitin ligase complexes. Interestingly, some of the molecules involved in presynaptic assembly also play roles in regulating axon polarity and outgrowth, suggesting that different neurodevelopmental processes are molecularly integrated.

    View details for DOI 10.1016/j.conb.2008.04.003

    View details for Web of Science ID 000257621700010

    View details for PubMedID 18538560

  • Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C-elegans SCIENCE Colon-Ramos, D. A., Margeta, M. A., Shen, K. 2007; 318 (5847): 103-106

    Abstract

    Neural circuits are assembled through the coordinated innervation of pre- and postsynaptic partners. We show that connectivity between two interneurons, AIY and RIA, in Caenorhabditis elegans is orchestrated by a pair of glial cells that express UNC-6 (netrin). In the postsynaptic neuron RIA, the netrin receptor UNC-40 (DCC, deleted in colorectal cancer) plays a conventional guidance role, directing outgrowth of the RIA process ventrally toward the glia. In the presynaptic neuron AIY, UNC-40 (DCC) plays an unexpected and previously uncharacterized role: It cell-autonomously promotes assembly of presynaptic terminals in the immediate vicinity of the glial cell endfeet. These results indicate that netrin can be used both for guidance and local synaptogenesis and suggest that glial cells can function as guideposts during the assembly of neural circuits in vivo.

    View details for DOI 10.1126/science.1143762

    View details for Web of Science ID 000249915400051

    View details for PubMedID 17916735

    View details for PubMedCentralID PMC2741089

  • Wnt signaling positions neuromuscular connectivity by inhibiting synapse formation in C-elegans CELL Klassen, M. P., Shen, K. 2007; 130 (4): 704-716

    Abstract

    Nervous system function is mediated by a precisely patterned network of synaptic connections. While several cell-adhesion and secreted molecules promote the assembly of synapses, the contribution of signals that negatively regulate synaptogenesis is not well understood. We examined synapse formation in the Caenorhabditis elegans motor neuron DA9, whose presynapses are restricted to a specific segment of its axon. We report that the Wnt lin-44 localizes the Wnt receptor lin-17/Frizzled (Fz) to a subdomain of the DA9 axon that is devoid of presynaptic specializations. When this signaling pathway, composed of the Wnts lin-44 and egl-20, lin-17/Frizzled and dsh-1/Dishevelled, is compromised, synapses develop ectopically in this subdomain. Conversely, overexpression of LIN-44 in cells adjacent to DA9 is sufficient to expand LIN-17 localization within the DA9 axon, thereby inhibiting presynaptic assembly. These results suggest that morphogenetic signals can spatially regulate the patterning of synaptic connections by subdividing an axon into discrete domains.

    View details for DOI 10.1016/j.cell.2007.06.046

    View details for Web of Science ID 000249319400020

    View details for PubMedID 17719547

  • Spatial regulation of an E3 ubiquitin ligase directs selective synapse elimination SCIENCE Ding, M., Chao, D., Wang, G., Shen, K. 2007; 317 (5840): 947-951

    Abstract

    Stereotyped synaptic connectivity can arise both by precise recognition between appropriate partners during synaptogenesis and by selective synapse elimination. The molecular mechanisms that underlie selective synapse removal are largely unknown. We found that stereotyped developmental elimination of synapses in the Caenorhabditis elegans hermaphrodite-specific motor neuron (HSNL) was mediated by an E3 ubiquitin ligase, a Skp1-cullin-F-box (SCF) complex composed of SKR-1 and the F-box protein SEL-10. SYG-1, a synaptic adhesion molecule, bound to SKR-1 and inhibited assembly of the SCF complex, thereby protecting nearby synapses. Thus, subcellular regulation of ubiquitin-mediated protein degradation contributes to precise synaptic connectivity through selective synapse elimination.

    View details for DOI 10.1126/science.1145727

    View details for Web of Science ID 000248780200040

    View details for PubMedID 17626846

  • Hierarchical assembly of presynaptic components in defined C. elegans synapses NATURE NEUROSCIENCE Patel, M. R., Lehrman, E. K., Poon, V. Y., Crump, J. G., Zhen, M., Bargmann, C. I., Shen, K. 2006; 9 (12): 1488-1498

    Abstract

    The presynaptic regions of axons accumulate synaptic vesicles, active zone proteins and periactive zone proteins. However, the rules for orderly recruitment of presynaptic components are not well understood. We systematically examined molecular mechanisms of presynaptic development in egg-laying synapses of Caenorhabditis elegans, demonstrating that two scaffolding molecules, SYD-1 and SYD-2, have key roles in presynaptic assembly. SYD-2 (liprin-alpha) was previously shown to regulate the size and the shape of active zones. We now show that in syd-1 and syd-2 mutants, synaptic vesicles and numerous other presynaptic proteins fail to accumulate at presynaptic sites. SYD-1 and SYD-2 function cell-autonomously at presynaptic terminals, downstream of synaptic specificity molecule SYG-1. SYD-1 is likely to act upstream of SYD-2 to positively regulate its synaptic assembly activity. These data imply a hierarchical organization of presynaptic assembly, in which transmembrane specificity molecules initiate synaptogenesis by recruiting a few key scaffolding proteins, which in turn assemble other presynaptic components.

    View details for DOI 10.1038/nn1806

    View details for Web of Science ID 000242404000012

    View details for PubMedID 17115039

  • Think globally, act locally: Local translation and synapse formation in cultured Aplysia neurons NEURON Shen, K. 2006; 49 (3): 323-325

    Abstract

    Synapse formation is initiated by cell-cell contact between appropriate pre- and postsynaptic cells and is followed by recruitment of protein complexes in both pre- and postsynaptic compartments. In this issue of Neuron, Lyles et al. show that in cultured Aplysia neurons, clustering of an mRNA at nascent synapses is not only induced by the recognition between synaptic partners, but is also required for further synaptic development and maintenance.

    View details for DOI 10.1016/j.neuron.2006.01.011

    View details for Web of Science ID 000235260900002

    View details for PubMedID 16446134

  • Molecular mechanisms of target specificity during synapse formation CURRENT OPINION IN NEUROBIOLOGY Shen, K. 2004; 14 (1): 83-88

    Abstract

    Neurons are connected with a high degree of specificity in neuronal circuits. Axon guidance mechanisms are responsible for directing axons to their approximate target region. It is not well understood how precise synaptic connections form between specific pre- and postsynaptic neurons within the target area. Recent analysis of a group of cell surface proteins in different systems has shed light on the diverse cellular and molecular mechanisms that generate the precise patterns of connectivity.

    View details for DOI 10.1016/j.conb.2004.01.007

    View details for Web of Science ID 000220221800012

    View details for PubMedID 15018942

  • Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell Shen K, Fetter RD, Bargmann CI. 2004; 116 (6): 55
  • The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell Shen K, Bargmann CI. 2003; 112 (5): 619
  • Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II NATURE NEUROSCIENCE Shen, K., Teruel, M. N., Connor, J. H., Shenolikar, S., Meyer, T. 2000; 3 (9): 881-886

    Abstract

    Synaptic plasticity is thought to be a key process for learning, memory and other cognitive functions of the nervous system. The initial events of plasticity require the conversion of brief electrical signals into alterations of the biochemical properties of synapses that last for much longer than the initial stimuli. Here we show that a regulator of synaptic plasticity, calcium/calmodulin-dependent protein kinase IIalpha (CaMKII), sequentially translocates to postsynaptic sites, undergoes autophosphorylation and gets trapped for several minutes until its dissociation is induced by secondary autophosphorylation and phosphatase 1 action. Once dissociated, CaMKII shows facilitated translocation for several minutes. This suggests that trapping of CaMKII by its targets and priming of CaMKII translocation may function as biochemical memory mechanisms that change the signaling capacity of synapses.

    View details for Web of Science ID 000167177400014

    View details for PubMedID 10966618

  • In and out of the postsynaptic region: signalling proteins on the move TRENDS IN CELL BIOLOGY Meyer, T., Shen, K. 2000; 10 (6): 238-244

    Abstract

    Reversible translocation of signalling proteins to and from their sites of action has emerged as an important theme in signal transduction. The recent findings of the stimulus-induced translocation of Ca2+-calmodulin-dependent protein kinase II (CaMKII) and the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor to and from the postsynaptic region are model cases for understanding how the dynamic localization of signalling proteins is used to regulate signal transduction.

    View details for Web of Science ID 000087147000004

    View details for PubMedID 10802539

  • Phosphatidylinositol 4,5-bisphoshate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion CELL Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S. L., York, J. D., Sheetz, M. P., Meyer, T. 2000; 100 (2): 221-228

    Abstract

    Binding interactions between the plasma membrane and the cytoskeleton define cell functions such as cell shape, formation of cell processes, cell movement, and endocytosis. Here we use optical tweezers tether force measurements and show that plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) acts as a second messenger that regulates the adhesion energy between the cytoskeleton and the plasma membrane. Receptor stimuli that hydrolyze PIP2 lowered adhesion energy, a process that could be mimicked by expressing PH domains that sequester PIP2 or by targeting a 5'-PIP2-phosphatase to the plasma membrane to selectively lower plasma membrane PIP2 concentration. Our study suggests that plasma membrane PIP2 controls dynamic membrane functions and cell shape by locally increasing and decreasing the adhesion between the actin-based cortical cytoskeleton and the plasma membrane.

    View details for Web of Science ID 000084932200006

    View details for PubMedID 10660045

  • Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation SCIENCE Shen, K., Meyer, T. 1999; 284 (5411): 162-166

    Abstract

    Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.

    View details for Web of Science ID 000079509000059

    View details for PubMedID 10102820

  • CaMKII beta functions as an F-actin targeting module that localizes CaMKII alpha/beta heterooligomers to dendritic spines NEURON Shen, K., Teruel, M. N., Subramanian, K., Meyer, T. 1998; 21 (3): 593-606

    Abstract

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase that regulates long-term potentiation and other forms of neuronal plasticity. Functional differences between the neuronal CaMKIIalpha and CaMKIIbeta isoforms are not yet known. Here, we use green fluorescent protein-tagged (GFP-tagged) CaMKII isoforms and show that CaMKIIbeta is bound to F-actin in dendritic spines and cell cortex while CaMKIIalpha is largely a cytosolic enzyme. When expressed together, the two isoforms form large heterooligomers, and a small fraction of CaMKIIbeta is sufficient to dock the predominant CaMKIIalpha to the actin cytoskeleton. Thus, CaMKIIbeta functions as a targeting module that localizes a much larger number of CaMKIIalpha isozymes to synaptic and cytoskeletal sites of action.

    View details for Web of Science ID 000076196400015

    View details for PubMedID 9768845