
Ke Zeng
Postdoctoral Scholar, Electrical Engineering
Bio
Ke Zeng received his Ph.D. and MS degree in the Electrical Engineering Department of SUNY-Buffalo. His current research is focused on fabricating various high power/performance electronic devices based on GaN and Ga2O3, especially utilizing various novel edge termination techniques and device structures, as well as understanding the fundamental physics underlying these devices.
All Publications
-
Vertical Ga2O3 MOSFET With Magnesium Diffused Current Blocking Layer
IEEE ELECTRON DEVICE LETTERS
2022; 43 (9): 1527-1530
View details for DOI 10.1109/LED.2022.3196035
View details for Web of Science ID 000845067200038
-
2.8 kV Avalanche in Vertical GaN PN Diode Utilizing Field Plate on Hydrogen Passivated P-Layer
IEEE ELECTRON DEVICE LETTERS
2022; 43 (4): 596-599
View details for DOI 10.1109/LED.2022.3149748
View details for Web of Science ID 000792918100027
-
A discussion on various experimental methods of impact ionization coefficient measurement in GaN
AIP ADVANCES
2022; 12 (3)
View details for DOI 10.1063/5.0083111
View details for Web of Science ID 000772898200002
-
Study of Avalanche Behavior in 3 kV GaN Vertical P-N Diode Under UIS Stress for Edge-termination Optimization
IEEE. 2022
View details for DOI 10.1109/IRPS48227.2022.9764525
View details for Web of Science ID 000922926400099
-
On-Wafer Investigation of Avalanche Robustness in 1.3 kV GaN-on-GaN P-N Diode Under Unclamped Inductive Switching Stress
IEEE. 2021: 40-43
View details for DOI 10.1109/WiPDA49284.2021.9645154
View details for Web of Science ID 000787172500009
-
Study on Avalanche Uniformity in 1.2KV GaN Vertical PIN Diode with Bevel Edge-Termination
IEEE. 2021
View details for DOI 10.1109/IRPS46558.2021.9405165
View details for Web of Science ID 000672563100076
-
Designing Beveled Edge Termination in GaN Vertical p-i-n Diode-Bevel Angle, Doping, and Passivation
IEEE TRANSACTIONS ON ELECTRON DEVICES
2020; 67 (6): 2457–62
View details for DOI 10.1109/TED.2020.2987040
View details for Web of Science ID 000538163700037
-
Field-Plated Lateral Ga2O3 MOSFETs With Polymer Passivation and 8.03 kV Breakdown Voltage
IEEE ELECTRON DEVICE LETTERS
2020; 41 (6): 836–39
View details for DOI 10.1109/LED.2020.2991146
View details for Web of Science ID 000541155300011