Bio


I am Mai Ly Burke, a junior at Stanford University majoring in molecular, cellular, and developmental biology. My interests lie in genetics, neurobiology, and cancer biology. I plan to apply my passion for these topics to develop innovative therapies and technologies to better treat diseases like cancer. Having grown up in Vietnam—a country that grapples with many serious diseases—my work is fueled by a genuine passion for improving lives and giving back to my community. Please feel free to reach out with any questions you may have!

All Publications


  • Pavement ant extract is a chemotaxis repellent for C. elegans. microPublication biology Lopez, J. S., Ali, S., Asher, M., Benjamin, C. A., Brennan, R. T., Burke, M. L., Civantos, J. M., DeJesus, E. A., Geller, A., Guo, M. Y., Haase Cox, S. K., Johannsen, J. M., Kang, J. S., Konsker, H. B., Liu, B. C., Oakes, K. G., Park, H. I., Perez, D. R., Sajjadian, A. M., Torio Salem, M., Sato, J., Zeng, A. I., Juarez, B. H., Gonzalez, M., Morales, G., Bradon, N., Fiocca, K., Pamplona Barbosa, M. M., O'Connell, L. A. 2024; 2024

    Abstract

    Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant ( Tetramorium immigrans ) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.

    View details for DOI 10.17912/micropub.biology.001146

    View details for PubMedID 38596360

    View details for PubMedCentralID PMC11002644