Honors & Awards


  • Early Career Investigator Award, American Heart Association Genomic and Precision Medicine Council (11/15/2020)
  • Young Investigator Award, Swedish foundation for promoting exercise (Sveriges Centralförening för Idrottens Främjande) (10/2019)
  • Young Investigator Award, Research Group on the Biochemistry of Exercise (10/2018)

Boards, Advisory Committees, Professional Organizations


  • Member, Council on Genomic and Precision Medicine Early Career Committee (2022 - Present)

Professional Education


  • M.Sc., Karolinska Institute, Biomedicine (2007)
  • PhD, Karolinska Institute, Medicine (2015)

Current Research and Scholarly Interests


Interested in the genetics of human performance and the multi-omic response to exercise and training for optimizing human health.

Clinical Trials


  • GEnder Dysphoria Treatment in Sweden Recruiting

    Gender dysphoria (DSM-5) or transsexualism (ICD10) is a condition in which a person's feeling of gender identity is not congruent with the physical body. The hormonal treatment includes inhibition of one's own sex hormone production followed by treatment with testosterone or estrogen levels that are normal for the opposite sex. Seen as experimental model, this is a process that provides an opportunity to study the sex hormone dependent influences that explain differences in morbidity in men and women respectively. The differences that are especially significant but not well known is 1) metabolic changes in the regulation of glucose homeostasis and lipid metabolism 2) regulation of vascular function and structural effects on the heart and arteries 3) regulation of skeletal muscle mass and fat tissue 4) morphological and functional effects on discrete areas of the brain. Therefore, the investigators will follow these patients for a year to study how the heart, blood vessels, brain, and risk factors for cardiovascular disease affected by altered sex hormone patterns and studying what happens in the muscles and fat in both the short and long term with respect to particular gene expression and epigenetic changes and link it to metabolic changes and body composition.

    View full details

  • HIIT vs. MICT Training Study Recruiting

    The purpose of this study is to compare the impact of high-intensity interval training (HIIT) versus moderate-intensity continuous training (MICT) on human health outcomes in healthy sedentary subjects, over 12 weeks of exercise training. The investigators will compare several health parameters, such as changes in multiomics profile, cardiorespiratory fitness, muscle strength, and body composition, before and after 12-week interventions of either HIIT or MICT.

    View full details

  • Molecular Transducers of Physical Activity Consortium Not Recruiting

    The goal of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) is to assess molecular changes that occur in response to physical activity (PA). To achieve this aim, a mechanistic randomized controlled trial (RCT) is conducted, in which adult study participants are randomized to endurance exercise (EE) training, resistance exercise (RE) training, or no exercise Control for a period of approximately 12 weeks. The overarching hypothesis is that there are discoverable molecular transducers that communicate and coordinate the effects of exercise on cells, tissues, and organs, which may initiate processes ultimately leading to the health benefits of exercise. Because this is a mechanistic trial, the main goal is not a single health-related outcome. Rather, the goal is to generate a resource leading to the generation of a map of the molecular responses to exercise that will be used by the Consortium and by the scientific community at large to generate hypotheses for future investigations of the health benefits of PA.

    Stanford is currently not accepting patients for this trial.

    View full details

All Publications


  • Exercise is associated with younger methylome and transcriptome profiles in human skeletal muscle. Aging cell Voisin, S., Seale, K., Jacques, M., Landen, S., Harvey, N. R., Haupt, L. M., Griffiths, L. R., Ashton, K. J., Coffey, V. G., Thompson, J. M., Doering, T. M., Lindholm, M. E., Walsh, C., Davison, G., Irwin, R., McBride, C., Hansson, O., Asplund, O., Heikkinen, A. E., Piirila, P., Pietilainen, K. H., Ollikainen, M., Blocquiaux, S., Thomis, M., Dawn, C. K., Sharples, A. P., Eynon, N. 2023: e13859

    Abstract

    Exercise training prevents age-related decline in muscle function. Targeting epigenetic aging is a promising actionable mechanism and late-life exercise mitigates epigenetic aging in rodent muscle. Whether exercise training can decelerate, or reverse epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis of the methylome and transcriptome of an unprecedented number of human skeletal muscle samples (n=3176). We show that: (1) individuals with higher baseline aerobic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training leads to significant shifts of epigenetic and transcriptomic patterns toward a younger profile, and (3) muscle disuse "ages" the transcriptome. Higher fitness levels were associated with attenuated differential methylation and transcription during aging. Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger state after exercise training interventions, while the transcriptome shifted toward an older state after forced muscle disuse. We demonstrate that exercise training targets many of the age-related transcripts and DNA methylation loci to maintain younger methylome and transcriptome profiles, specifically in genes related to muscle structure, metabolism, and mitochondrial function. Our comprehensive analysis will inform future studies aiming to identify the best combination of therapeutics and exercise regimes to optimize longevity.

    View details for DOI 10.1111/acel.13859

    View details for PubMedID 37128843

  • Multiomic identification of key transcriptional regulatory programs during endurance exercise training. bioRxiv : the preprint server for biology Smith, G. R., Zhao, B., Lindholm, M. E., Raja, A., Viggars, M., Pincas, H., Gay, N. R., Sun, Y., Ge, Y., Nair, V. D., Sanford, J. A., S Amper, M. A., Vasoya, M., Smith, K. S., Montgomery, S., Zaslavsky, E., Bodine, S. C., Esser, K. A., Walsh, M. J., Snyder, M. P., Sealfon, S. C., MoTrPAC Study Group 2023

    Abstract

    Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility and RNA expression across various rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes across both omic layers, including highly correlated differentially accessible regions (DARs) and differentially expressed genes (DEGs). We identified open chromatin regions associated with DEGs (DEGaPs) and found tissue-specific and genomic feature-specific TF motif enrichment patterns among both DARs and DEGaPs. Accessible promoters of up-vs. down-regulated DEGs per tissue showed distinct TF enrichment patterns. Further, some EET-induced TFs in skeletal muscle were either validated at the proteomic level (MEF2C and NUR77) or correlated with exercise-related phenotypic changes. We provide an in-depth analysis of the epigenetic and trans-factor-dependent processes governing gene expression during EET.

    View details for DOI 10.1101/2023.01.10.523450

    View details for PubMedID 36711841

  • Mono- and Biallelic Protein-Truncating Variants in Alpha-Actinin 2 Cause Cardiomyopathy Through Distinct Mechanisms. Circulation. Genomic and precision medicine Lindholm, M. E., Jimenez-Morales, D., Zhu, H., Seo, K., Amar, D., Zhao, C., Raja, A., Madhvani, R., Abramowitz, S., Espenel, C., Sutton, S., Caleshu, C., Berry, G. J., Motonaga, K. S., Dunn, K., Platt, J., Ashley, E. A., Wheeler, M. T. 2021: CIRCGEN121003419

    Abstract

    BACKGROUND: ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2.METHODS: Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used coimmunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres.RESULTS: Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 and GJA1, 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing.CONCLUSIONS: Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.

    View details for DOI 10.1161/CIRCGEN.121.003419

    View details for PubMedID 34802252

  • Time trajectories in the transcriptomic response to exercise - a meta-analysis. Nature communications Amar, D., Lindholm, M. E., Norrbom, J., Wheeler, M. T., Rivas, M. A., Ashley, E. A. 2021; 12 (1): 3471

    Abstract

    Exercise training prevents multiple diseases, yet the molecular mechanisms that drive exercise adaptation are incompletely understood. To address this, we create a computational framework comprising data from skeletal muscle or blood from 43 studies, including 739 individuals before and after exercise or training. Using linear mixed effects meta-regression, we detect specific time patterns and regulatory modulators of the exercise response. Acute and long-term responses are transcriptionally distinct and we identify SMAD3 as a central regulator of the exercise response. Exercise induces a more pronounced inflammatory response in skeletal muscle of older individuals and our models reveal multiple sex-associated responses. We validate seven of our top genes in a separate human cohort. In this work, we provide a powerful resource ( www.extrameta.org ) that expands the transcriptional landscape of exercise adaptation by extending previously known responses and their regulatory networks, and identifying novel modality-, time-, age-, and sex-associated changes.

    View details for DOI 10.1038/s41467-021-23579-x

    View details for PubMedID 34108459

  • Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to Exercise. Cell Sanford, J. A., Nogiec, C. D., Lindholm, M. E., Adkins, J. N., Amar, D., Dasari, S., Drugan, J. K., Fernandez, F. M., Radom-Aizik, S., Schenk, S., Snyder, M. P., Tracy, R. P., Vanderboom, P., Trappe, S., Walsh, M. J., Molecular Transducers of Physical Activity Consortium, Adkins, J. N., Amar, D., Dasari, S., Drugan, J. K., Evans, C. R., Fernandez, F. M., Li, Y., Lindholm, M. E., Nogiec, C. D., Radom-Aizik, S., Sanford, J. A., Schenk, S., Snyder, M. P., Tomlinson, L., Tracy, R. P., Trappe, S., Vanderboom, P., Walsh, M. J., Alekel, D. L., Bekirov, I., Boyce, A. T., Boyington, J., Fleg, J. L., Joseph, L. J., Laughlin, M. R., Maruvada, P., Morris, S. A., McGowan, J. A., Nierras, C., Pai, V., Peterson, C., Ramos, E., Roary, M. C., Williams, J. P., Xia, A., Cornell, E., Rooney, J., Miller, M. E., Ambrosius, W. T., Rushing, S., Stowe, C. L., Rejeski, W. J., Nicklas, B. J., Pahor, M., Lu, C., Trappe, T., Chambers, T., Raue, U., Lester, B., Bergman, B. C., Bessesen, D. H., Jankowski, C. M., Kohrt, W. M., Melanson, E. L., Moreau, K. L., Schauer, I. E., Schwartz, R. S., Kraus, W. E., Slentz, C. A., Huffman, K. M., Johnson, J. L., Willis, L. H., Kelly, L., Houmard, J. A., Dubis, G., Broskey, N., Goodpaster, B. H., Sparks, L. M., Coen, P. M., Cooper, D. M., Haddad, F., Rankinen, T., Ravussin, E., Johannsen, N., Harris, M., Jakicic, J. M., Newman, A. B., Forman, D. D., Kershaw, E., Rogers, R. J., Nindl, B. C., Page, L. C., Stefanovic-Racic, M., Barr, S. L., Rasmussen, B. B., Moro, T., Paddon-Jones, D., Volpi, E., Spratt, H., Musi, N., Espinoza, S., Patel, D., Serra, M., Gelfond, J., Burns, A., Bamman, M. M., Buford, T. W., Cutter, G. R., Bodine, S. C., Esser, K., Farrar, R. P., Goodyear, L. J., Hirshman, M. F., Albertson, B. G., Qian, W., Piehowski, P., Gritsenko, M. A., Monore, M. E., Petyuk, V. A., McDermott, J. E., Hansen, J. N., Hutchison, C., Moore, S., Gaul, D. A., Clish, C. B., Avila-Pacheco, J., Dennis, C., Kellis, M., Carr, S., Jean-Beltran, P. M., Keshishian, H., Mani, D. R., Clauser, K., Krug, K., Mundorff, C., Pearce, C., Ivanova, A. A., Ortlund, E. A., Maner-Smith, K., Uppal, K., Zhang, T., Sealfon, S. C., Zavlasky, E., Nair, V., Li, S., Jain, N., Ge, Y., Sun, Y., Nudelman, G., Ruf-Zamojski, F., Smith, G., Pincas, N., Rubenstein, A., Amper, M. A., Seenarine, N., Lappalainen, T., Lanza, I. R., Nair, K. S., Klaus, K., Montgomery, S. B., Smith, K. S., Gay, N. R., Zhao, B., Hung, C. J., Zebarjadi, N., Balliu, B., Fresard, L., Burant, C. F., Li, J. Z., Kachman, M., Soni, T., Raskind, A. B., Gerszten, R., Robbins, J., Ilkayeva, O., Muehlbauer, M. J., Newgard, C. B., Ashley, E. A., Wheeler, M. T., Jimenez-Morales, D., Raja, A., Dalton, K. P., Zhen, J., Kim, Y. S., Christle, J. W., Marwaha, S., Chin, E. T., Hershman, S. G., Hastie, T., Tibshirani, R., Rivas, M. A. 2020; 181 (7): 1464–74

    Abstract

    Exercise provides a robust physiological stimulus that evokes cross-talk among multiple tissues that when repeated regularly (i.e., training) improves physiological capacity, benefits numerous organ systems, and decreases the risk for premature mortality. However, a gap remains in identifying the detailed molecular signals induced by exercise that benefits health and prevents disease. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to address this gap and generate a molecular map of exercise. Preclinical and clinical studies will examine the systemic effects of endurance and resistance exercise across a range of ages and fitness levels by molecular probing of multiple tissues before and after acute and chronic exercise. From this multi-omic and bioinformatic analysis, a molecular map of exercise will be established. Altogether, MoTrPAC will provide a public database that is expected to enhance our understanding of the health benefits of exercise and to provide insight into how physical activity mitigates disease.

    View details for DOI 10.1016/j.cell.2020.06.004

    View details for PubMedID 32589957

  • Exercise Induces Different Molecular Responses in Trained and Untrained Human Muscle. Medicine and science in sports and exercise Moberg, M., Lindholm, M. E., Reitzner, S. M., Ekblom, B., Sundberg, C., Psilander, N. 2020

    Abstract

    INTRODUCTION: Human skeletal muscle is thought to have heightened sensitivity to exercise stimulus when it has been previously trained (i.e., it possesses "muscle memory"). We investigated whether basal and acute resistance exercise-induced gene expression and cell signaling events are influenced by previous strength training history.METHODS: Accordingly, 19 training naive women and men completed 10 weeks of unilateral leg strength training, followed by 20 weeks of detraining. Subsequently, an acute resistance exercise session was performed for both legs, with vastus lateralis biopsies taken at rest and 1 h after exercise in both legs (memory and control).RESULTS: The phosphorylation of AMPK and eEF2 was higher in the memory leg than in the control leg at both time points. Post-exercise phosphorylation of 4E-BP1 was higher in the memory leg than in the control leg. The memory leg had lower basal mRNA levels of total PGC1alpha, and, unlike the control leg, exhibited increases in PGC1alpha-ex1a transcripts after exercise. In the genes related to myogenesis (SETD3, MYOD1, and MYOG), mRNA levels differed between the memory and the untrained leg; these effects were evident primarily in the male subjects. Expression of the novel gene SPRYD7 was lower in the memory leg at rest and decreased after exercise only in the control leg, but SPRYD7 protein levels were higher in the memory leg.CONCLUSION: In conclusion, several key regulatory genes and proteins involved in muscular adaptations to resistance exercise are influenced by previous training history. Although the relevance and mechanistic explanation for these findings need further investigation, they support the view of a molecular muscle memory in response to training.

    View details for DOI 10.1249/MSS.0000000000002310

    View details for PubMedID 32079914

  • An epigenetic clock for human skeletal muscle. Journal of cachexia, sarcopenia and muscle Voisin, S., Harvey, N. R., Haupt, L. M., Griffiths, L. R., Ashton, K. J., Coffey, V. G., Doering, T. M., Thompson, J. M., Benedict, C., Cedernaes, J., Lindholm, M. E., Craig, J. M., Rowlands, D. S., Sharples, A. P., Horvath, S., Eynon, N. 2020

    Abstract

    BACKGROUND: Ageing is associated with DNA methylation changes in all human tissues, and epigenetic markers can estimate chronological age based on DNA methylation patterns across tissues. However, the construction of the original pan-tissue epigenetic clock did not include skeletal muscle samples and hence exhibited a strong deviation between DNA methylation and chronological age in this tissue.METHODS: To address this, we developed a more accurate, muscle-specific epigenetic clock based on the genome-wide DNA methylation data of 682 skeletal muscle samples from 12 independent datasets (18-89 years old, 22% women, 99% Caucasian), all generated with Illumina HumanMethylation (HM) arrays (HM27, HM450, or HMEPIC). We also took advantage of the large number of samples to conduct an epigenome-wide association study of age-associated DNA methylation patterns in skeletal muscle.RESULTS: The newly developed clock uses 200 cytosine-phosphate-guanine dinucleotides to estimate chronological age in skeletal muscle, 16 of which are in common with the 353 cytosine-phosphate-guanine dinucleotides of the pan-tissue clock. The muscle clock outperformed the pan-tissue clock, with a median error of only 4.6 years across datasets (vs. 13.1 years for the pan-tissue clock, P < 0.0001) and an average correlation of rho = 0.62 between actual and predicted age across datasets (vs. rho = 0.51 for the pan-tissue clock). Lastly, we identified 180 differentially methylated regions with age in skeletal muscle at a false discovery rate < 0.005. However, gene set enrichment analysis did not reveal any enrichment for gene ontologies.CONCLUSIONS: We have developed a muscle-specific epigenetic clock that predicts age with better accuracy than the pan-tissue clock. We implemented the muscle clock in an r package called Muscle Epigenetic Age Test available on Bioconductor to estimate epigenetic age in skeletal muscle samples. This clock may prove valuable in assessing the impact of environmental factors, such as exercise and diet, on muscle-specific biological ageing processes.

    View details for DOI 10.1002/jcsm.12556

    View details for PubMedID 32067420

  • Skeletal Muscle Transcriptomic Comparison between Long-Term Trained and Untrained Men and Women. Cell reports Chapman, M. A., Arif, M. n., Emanuelsson, E. B., Reitzner, S. M., Lindholm, M. E., Mardinoglu, A. n., Sundberg, C. J. 2020; 31 (12): 107808

    Abstract

    To better understand the health benefits of lifelong exercise in humans, we conduct global skeletal muscle transcriptomic analyses of long-term endurance- (9 men, 9 women) and strength-trained (7 men) humans compared with age-matched untrained controls (7 men, 8 women). Transcriptomic analysis, Gene Ontology, and genome-scale metabolic modeling demonstrate changes in pathways related to the prevention of metabolic diseases, particularly with endurance training. Our data also show prominent sex differences between controls and that these differences are reduced with endurance training. Additionally, we compare our data with studies examining muscle gene expression before and after a months-long training period in individuals with metabolic diseases. This analysis reveals that training shifts gene expression in individuals with impaired metabolism to become more similar to our endurance-trained group. Overall, our data provide an extensive examination of the accumulated transcriptional changes that occur with decades-long training and identify important "exercise-responsive" genes that could attenuate metabolic disease.

    View details for DOI 10.1016/j.celrep.2020.107808

    View details for PubMedID 32579934

  • NOVEL ALPHA-ACTININ 2 MUTATIONS ARE ASSOCIATED WITH CARDIOMYOPATHY AND HYPERTROPHY IN HUMAN CARDIAC TISSUE AND IPSC-DERIVED CARDIOMYOCYTES Lindholm, M., Zhu, H., Huang, Y., Ashley, E. A., Wheeler, M. ELSEVIER SCIENCE INC. 2019: 1027
  • Metabolic and functional changes in transgender individuals following cross-sex hormone treatment: Design and methods of the GEnder Dysphoria Treatment in Sweden (GETS) study CONTEMPORARY CLINICAL TRIALS COMMUNICATIONS Wiik, A., Andersson, D. P., Brismar, T. B., Chanpen, S., Dhejne, C., Ekstrom, T. J., Flanagan, J. N., Holmberg, M., Kere, J., Lilja, M., Lindholm, M. E., Lundberg, T. R., Maret, E., Melin, M., Olsson, S. M., Rullman, E., Wahlen, K., Arver, S., Gustafsson, T. 2018; 10: 148–53

    Abstract

    Although the divergent male and female differentiation depends on key genes, many biological differences seen in men and women are driven by relative differences in estrogen and testosterone levels. Gender dysphoria denotes the distress that gender incongruence with the assigned sex at birth may cause. Gender-affirming treatment includes medical intervention such as inhibition of endogenous sex hormones and subsequent replacement with cross-sex hormones. The aim of this study is to investigate consequences of an altered sex hormone profile on different tissues and metabolic risk factors. By studying subjects undergoing gender-affirming medical intervention with sex hormones, we have the unique opportunity to distinguish between genetic and hormonal effects.The study is a single center observational cohort study conducted in Stockholm, Sweden. The subjects are examined at four time points; before initiation of treatment, after endogenous sex hormone inhibition, and three and eleven months following sex hormone treatment. Examinations include blood samples, skeletal muscle-, adipose- and skin tissue biopsies, arteriography, echocardiography, carotid Doppler examination, whole body MRI, CT of muscle and measurements of muscle strength.The primary outcome measure is transcriptomic and epigenomic changes in skeletal muscle. Secondary outcome measures include transcriptomic and epigenomic changes associated with metabolism in adipose and skin, muscle strength, fat cell size and ability to release fatty acids from adipose tissue, cardiovascular function, and body composition.This study will provide novel information on the role of sex hormone treatment in skeletal muscle, adipose and skin, and its relation to cardiovascular and metabolic disease.

    View details for DOI 10.1016/j.conctc.2018.04.005

    View details for Web of Science ID 000433315000022

    View details for PubMedID 30023449

    View details for PubMedCentralID PMC6046513

  • Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study NATURE COMMUNICATIONS DeBoever, C., Tanigawa, Y., Lindholm, M. E., McInnes, G., Lavertu, A., Ingelsson, E., Chang, C., Ashley, E. A., Bustamante, C. D., Daly, M. J., Rivas, M. A. 2018; 9: 1612

    Abstract

    Protein-truncating variants can have profound effects on gene function and are critical for clinical genome interpretation and generating therapeutic hypotheses, but their relevance to medical phenotypes has not been systematically assessed. Here, we characterize the effect of 18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27 associations between medical phenotypes and protein-truncating variants in genes outside the major histocompatibility complex. We perform phenome-wide analyses and directly measure the effect in homozygous carriers, commonly referred to as "human knockouts," across medical phenotypes for genes implicated as being protective against disease or associated with at least one phenotype in our study. We find several genes with strong pleiotropic or non-additive effects. Our results illustrate the importance of protein-truncating variants in a variety of diseases.

    View details for PubMedID 29691392

  • The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts. PLoS genetics Lindholm, M. E., Giacomello, S., Werne Solnestam, B., Fischer, H., Huss, M., Kjellqvist, S., Sundberg, C. J. 2016; 12 (9)

    Abstract

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

    View details for DOI 10.1371/journal.pgen.1006294

    View details for PubMedID 27657503

    View details for PubMedCentralID PMC5033478

  • Skeletal muscle hypoxia-inducible factor-1 and exercise EXPERIMENTAL PHYSIOLOGY Lindholm, M. E., Rundqvist, H. 2016; 101 (1): 28-32

    Abstract

    Reduced oxygen levels in skeletal muscle during exercise are a consequence of increased oxygen consumption. The cellular response to hypoxia is conferred to a large extent by activation of the hypoxia-sensitive transcription factor hypoxia-inducible factor-1 (HIF-1). The target genes of HIF-1 increase oxygen transport through mechanisms such as erythropoietin-mediated erythropoiesis and vascular endothelial growth factor-induced angiogenesis and improve tissue function during low oxygen availability through increased expression of glucose transporters and glycolytic enzymes, which makes HIF-1 an interesting candidate as a mediator of skeletal muscle adaptation to endurance training. However, HIF-1 may also inhibit cellular oxygen consumption and mitochondrial oxidative metabolism, features discordant with the phenotype of a trained muscle. Skeletal muscle readily adjusts to altered functional demands. Adaptation of skeletal muscle to long-term aerobic training enables better aerobic performance at higher intensities through improved metabolic capacity and oxygen supply. The components of acute exercise that act as triggers for adaptation are still largely unknown; however, an early hypothesis was that local hypoxia acts as a possible stimulus for exercise adaptation. The hypoxia-sensitive subunit, HIF-1α, is stabilized in skeletal muscle in response to an acute bout of endurance exercise. However, long-term endurance exercise seems to attenuate the acute HIF-1α response. This attenuation is concurrent with an increase in expression of several negative regulators of the HIF system. We propose that the HIF-1α response is blunted in response to long-term exercise training through induction of its negative regulators and that this inhibition enables the enhanced oxidative metabolism that is part of a local physiological response to exercise.

    View details for DOI 10.1113/EPO85318

    View details for Web of Science ID 000368251900005

    View details for PubMedID 26391197

  • The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling BMC GENOMICS Lindskog, C., Linne, J., Fagerberg, L., Hallstrom, B. M., Sundberg, C. J., Lindholm, M., Huss, M., Kampf, C., Choi, H., Liem, D. A., Ping, P., Varemo, L., Mardinoglu, A., Nielsen, J., Larsson, E., Ponten, F., Uhlen, M. 2015; 16

    Abstract

    To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level.Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction.Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.

    View details for DOI 10.1186/s12864-015-1686-y

    View details for Web of Science ID 000356761400001

    View details for PubMedID 26109061

  • An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training EPIGENETICS Lindholm, M. E., Marabita, F., Gomez-Cabrero, D., Rundqvist, H., Ekstrom, T. J., Tegner, J., Sundberg, C. J. 2014; 9 (12): 1557-1569

    Abstract

    Regular endurance exercise training induces beneficial functional and health effects in human skeletal muscle. The putative contribution to the training response of the epigenome as a mediator between genes and environment has not been clarified. Here we investigated the contribution of DNA methylation and associated transcriptomic changes in a well-controlled human intervention study. Training effects were mirrored by significant alterations in DNA methylation and gene expression in regions with a homogeneous muscle energetics and remodeling ontology. Moreover, a signature of DNA methylation and gene expression separated the samples based on training and gender. Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters. We identified transcriptional regulator binding motifs of MRF, MEF2 and ETS proteins in the proximity of the changing sites. A transcriptional network analysis revealed modules harboring distinct ontologies and, interestingly, the overall direction of the changes of methylation within each module was inversely correlated to expression changes. In conclusion, we show that highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus.

    View details for DOI 10.4161/15592294.2014.982445

    View details for Web of Science ID 000349364000001

    View details for PubMedID 25484259

    View details for PubMedCentralID PMC4622000

  • The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing FASEB JOURNAL Lindholm, M. E., Huss, M., Solnestam, B. W., Kjellqvist, S., Lundeberg, J., Sundberg, C. J. 2014; 28 (10): 4571-4581

    Abstract

    Human skeletal muscle health is important for quality of life and several chronic diseases, including type II diabetes, heart disease, and cancer. Skeletal muscle is a tissue widely used to study mechanisms behind different diseases and adaptive effects of controlled interventions. For such mechanistic studies, knowledge about the gene expression profiles in different states is essential. Since the baseline transcriptome has not been analyzed systematically, the purpose of this study was to provide a deep reference profile of female and male skeletal muscle. RNA sequencing data were analyzed from a large set of 45 resting human muscle biopsies. We provide extensive information on the skeletal muscle transcriptome, including 5 previously unannotated protein-coding transcripts. Global transcriptional tissue homogeneity was strikingly high, within both a specific muscle and the contralateral leg. We identified >23,000 known isoforms and found >5000 isoforms that differ between the sexes. The female and male transcriptome was enriched for genes associated with oxidative metabolism and protein catabolic processes, respectively. The data demonstrate remarkably high tissue homogeneity and provide a deep and extensive baseline reference for the human skeletal muscle transcriptome, with regard to alternative splicing, novel transcripts, and sex differences in functional ontology.transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing.

    View details for DOI 10.1096/fj.14-255000

    View details for Web of Science ID 000342222700032

    View details for PubMedID 25016029

  • Negative regulation of HIF in skeletal muscle of elite endurance athletes: a tentative mechanism promoting oxidative metabolism AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY Lindholm, M. E., Fischer, H., Poellinger, L., Johnson, R. S., Gustafsson, T., Sundberg, C. J., Rundqvist, H. 2014; 307 (3): R248-R255

    Abstract

    The transcription factor hypoxia-inducible factor (HIF) has been suggested as a candidate for mediating training adaptation in skeletal muscle. However, recent evidence rather associates HIF attenuation with a trained phenotype. For example, a muscle-specific HIF deletion increases endurance performance, partly through decreased levels of pyruvate dehydrogenase kinase 1 (PDK-1). HIF activity is regulated on multiple levels: modulation of protein stability, transactivation capacity, and target gene availability. Prolyl hydroxylases (PHD1-3) induces HIF degradation, whereas factor-inhibiting HIF (FIH) and the histone deacetylase sirtuin-6 (SIRT6) repress its transcriptional activity. Together, these negative regulators introduce a mechanism for moderating HIF activity in vivo. We hypothesized that long-term training induces their expression. Negative regulators of HIF were explored by comparing skeletal muscle tissue from moderately active individuals (MA) with elite athletes (EA). In elite athletes, expression of the negative regulators PHD2 (MA 73.54 ± 9.54, EA 98.03 ± 6.58), FIH (MA 4.31 ± 0.25, EA 30.96 ± 7.99) and SIRT6 (MA 0.24 ± 0.07, EA 11.42 ± 2.22) were all significantly higher, whereas the response gene, PDK-1 was lower (MA 0.12 ± 0.03, EA 0.04 ± 0.01). Similar results were observed in a separate 6-wk training study. In vitro, activation of HIF in human primary muscle cell culture by PHD inactivation strongly induced PDK-1 (0.84 ± 0.12 vs 4.70 ± 0.63), providing evidence of a regulatory link between PHD activity and PDK-1 levels in a relevant model system. Citrate synthase activity, closely associated with aerobic exercise adaptation, increased upon PDK-1 silencing. We suggest that training-induced negative regulation of HIF mediates the attenuation of PDK-1 and contributes to skeletal muscle adaptation to exercise.

    View details for DOI 10.1152/ajpregu.00036.2013

    View details for Web of Science ID 000340833300002

    View details for PubMedID 24898836

  • An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform EPIGENETICS Marabita, F., Almgren, M., Lindholm, M. E., Ruhrmann, S., Fagerstrom-Billai, F., Jagodic, M., Sundberg, C. J., Ekstrom, T. J., Teschendorff, A. E., Tegner, J., Gomez-Cabrero, D. 2013; 8 (3): 333-346

    Abstract

    The proper identification of differentially methylated CpGs is central in most epigenetic studies. The Illumina HumanMethylation450 BeadChip is widely used to quantify DNA methylation; nevertheless, the design of an appropriate analysis pipeline faces severe challenges due to the convolution of biological and technical variability and the presence of a signal bias between Infinium I and II probe design types. Despite recent attempts to investigate how to analyze DNA methylation data with such an array design, it has not been possible to perform a comprehensive comparison between different bioinformatics pipelines due to the lack of appropriate data sets having both large sample size and sufficient number of technical replicates. Here we perform such a comparative analysis, targeting the problems of reducing the technical variability, eliminating the probe design bias and reducing the batch effect by exploiting two unpublished data sets, which included technical replicates and were profiled for DNA methylation either on peripheral blood, monocytes or muscle biopsies. We evaluated the performance of different analysis pipelines and demonstrated that: (1) it is critical to correct for the probe design type, since the amplitude of the measured methylation change depends on the underlying chemistry; (2) the effect of different normalization schemes is mixed, and the most effective method in our hands were quantile normalization and Beta Mixture Quantile dilation (BMIQ); (3) it is beneficial to correct for batch effects. In conclusion, our comparative analysis using a comprehensive data set suggests an efficient pipeline for proper identification of differentially methylated CpGs using the Illumina 450K arrays.

    View details for DOI 10.4161/epi.24008

    View details for Web of Science ID 000315923300010

    View details for PubMedID 23422812