Bio


Professor Brandeau is the Coleman F. Fung Professor in the School of Engineering and a Professor of Medicine (by Courtesy). Her research focuses on the development of applied mathematical and economic models to support health policy decisions. Her recent work has focused on HIV prevention and treatment programs, programs to control the spread of hepatitis B virus, and public health preparedness plans. She has served as Principal Investigator or Co-PI on a broad range of funded research projects.

She is a Fellow of the Institute for Operations Research and Management Science (INFORMS) and a member of the Omega Rho International Honor Society for Operations Research and Management Science. From INFORMS she has received the President’s Award (recognizing important contributions to the welfare of society), the Pierskalla Prize (for research excellence in health care management science), the Philip McCord Morse Lectureship Award, and the Award for the Advancement of Women in Operations Research and the Management Sciences. She has also received the Award for Excellence in Application of Pharmacoeconomics and Health Outcomes Research from the International Society for Pharmacoeconomics and Outcomes Research, and a Presidential Young Investigator Award from the National Science Foundation, among other awards. Professor Brandeau earned a BS in Mathematics and an MS in Operations Research from MIT, and a PhD in Engineering-Economic Systems from Stanford.

Academic Appointments


Honors & Awards


  • Member, Omega Rho Honor Society for Operations Research and Management Science (2015)
  • Omega Rho Distinguished Lecture on Operations Research and Management Science, Institute for Operations Research and Management Science (2015)
  • Philip McCord Morse Lecturership Award, Institute for Operations Research and Management Science (2015)
  • Award for the Advancement of Women in Operations Research and the Management Sciences, Institute for Operations Research and Management Science (2015)
  • Fellow, INFORMS (Institute for Operations Research and Management Science) (2009)
  • Graduate Teaching Award, Department of Management Science and Engineering (2008-2009)
  • Award for Excellence in Application of Pharmacoeconomics and Health Outcomes Research, International Society for Pharmacoeconomics and Outcomes Research (ISPOR) (2008)
  • President's Award, Institute for Operations Research and Management Science (2008)
  • Pierskalla Prize, Institute for Operations Research and Management Science (2001)
  • Annual Outstanding Paper Award, Society for Computer Simulation (1996)
  • Eugene L. Grant Teaching Award, Stanford School of Engineering (1990-1991)
  • PYI (Presidential Young Investigator) Award, National Science Foundation (1988-1993)

Boards, Advisory Committees, Professional Organizations


  • Member, Board of Scientific Counselors, Federal Advisory Committee to CDC Office of Public Health Preparedness & Response (2012 - Present)
  • Editorial Board Member, Health Care Management Science (1997 - Present)
  • Member, Institute of Medicine Standing Committee for the CDC Division of the Strategic National Stockpile (2015 - Present)
  • Member, BSC/NBSB Working Group, Strategic National Stockpile (SNS) Review 20/20 (2012 - 2013)
  • Member, Institute of Medicine Committee on Prepositioned Medical Countermeasures (2011 - 2011)
  • Member, Institute of Medicine Committee on the Prevention and Control of Viral Hepatitis Infections in the US (2008 - 2009)

Professional Education


  • PhD, Stanford University, Engineering-Economic Systems (1985)
  • MS, Massachusetts Institute of Technology, Operations Research (1978)
  • BS, Massachusetts Institute of Technology, Mathematics (1977)

Patents


  • Corey A. Billington, Margaret L. Brandeau. "United States Patent 5,258,915 System and Method for Optimum Operation Assignments in Printed Circuit Board Manufacturing", Hewlett-Packard, Nov 2, 1993

2015-16 Courses


Stanford Advisees


All Publications


  • Expansion of the National Salt Reduction Initiative: A Mathematical Model of Benefits and Risks of Population-Level Sodium Reduction MEDICAL DECISION MAKING Choi, S. E., Brandeau, M. L., Basu, S. 2016; 36 (1): 72-85

    Abstract

    . The National Salt Reduction Initiative, in which food producers agree to lower sodium to levels deemed feasible for different foods, is expected to significantly reduce sodium intake if expanded to a large sector of food manufacturers.. Given recent data on the relationship between sodium intake, hypertension, and associated cardiovascular disease at a population level, we sought to examine risks and benefits of the program.. To estimate the impact of further expanding the initiative on hypertension, myocardial infarction (MI) and stroke incidence, and related mortality, given food consumption patterns across the United States, we developed and validated a stochastic microsimulation model of hypertension, MI, and stroke morbidity and mortality, using data from food producers on sodium reduction among foods, linked to 24-hour dietary recalls, blood pressure, and cardiovascular histories from the National Health and Nutrition Examination Survey.. Expansion of the initiative to ensure all restaurants and manufacturers reach agreed-upon sodium targets would be expected to avert from 0.9 to 3.0 MIs (a 1.6%-5.4% reduction) and 0.5 to 2.8 strokes (a 1.1%-6.2% reduction) per 10,000 Americans per year over the next decade, after incorporating consumption patterns and variations in the effect of sodium reduction on blood pressure among different demographic groups. Even high levels of consumer addition of table salt or substitution among food categories would be unlikely to neutralize this benefit. However, if recent epidemiological associations between very low sodium and increased mortality are causal, then older women may be at risk of increased mortality from excessively low sodium intake.An expanded National Salt Reduction Initiative is likely to significantly reduce hypertension and hypertension-related cardiovascular morbidity but may be accompanied by potential risks to older women.

    View details for DOI 10.1177/0272989X15583846

    View details for Web of Science ID 000366910300008

    View details for PubMedID 25926284

  • Evaluating Cost-effectiveness of Interventions That Affect Fertility and Childbearing: How Health Effects Are Measured Matters. Medical decision making Goldhaber-Fiebert, J. D., Brandeau, M. L. 2015; 35 (7): 818-846

    Abstract

    Current guidelines for economic evaluations of health interventions define relevant outcomes as those accruing to individuals receiving interventions. Little consensus exists on counting health impacts on current and future fertility and childbearing. Our objective was to characterize current practices for counting such health outcomes.We developed a framework characterizing health interventions with direct and/or indirect effects on fertility and childbearing and how such outcomes are reported. We identified interventions spanning the framework and performed a targeted literature review for economic evaluations of these interventions. For each article, we characterized how the potential health outcomes from each intervention were considered, focusing on quality-adjusted life-years (QALYs) associated with fertility and childbearing.We reviewed 108 studies, identifying 7 themes: 1) Studies were heterogeneous in reporting outcomes. 2) Studies often selected outcomes for inclusion that tend to bias toward finding the intervention to be cost-effective. 3) Studies often avoided the challenges of assigning QALYs for pregnancy and fertility by instead considering cost per intermediate outcome. 4) Even for the same intervention, studies took heterogeneous approaches to outcome evaluation. 5) Studies used multiple, competing rationales for whether and how to include fertility-related QALYs and whose QALYs to include. 6) Studies examining interventions with indirect effects on fertility typically ignored such QALYs. 7) Even recent studies had these shortcomings. Limitations include that the review was targeted rather than systematic.Economic evaluations inconsistently consider QALYs from current and future fertility and childbearing in ways that frequently appear biased toward the interventions considered. As the Panel on Cost-Effectiveness in Health and Medicine updates its guidelines, making the practice of cost-effectiveness analysis more consistent is a priority. Our study contributes to harmonizing methods in this respect.

    View details for DOI 10.1177/0272989X15583845

    View details for PubMedID 25926281

  • Link removal for the control of stochastically evolving epidemics over networks: A comparison of approaches JOURNAL OF THEORETICAL BIOLOGY Enns, E. A., Brandeau, M. L. 2015; 371: 154-165

    Abstract

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two "preventive" approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two "reactive" approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdös-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdös-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing which nodes are initially infected by comparing the performance improvement achieved by reactive over preventive strategies. We find that such information is most valuable for moderate budget levels, with increasing value as disease spread becomes more likely (due to either increased connectedness of the network or increased infectiousness of the disease).

    View details for DOI 10.1016/j.jtbi.2015.02.005

    View details for Web of Science ID 000353011200014

    View details for PubMedID 25698229

  • Modeling and Calibration for Exposure to Time-Varying, Modifiable Risk Factors: The Example of Smoking Behavior in India MEDICAL DECISION MAKING Goldhaber-Fiebert, J. D., Brandeau, M. L. 2015; 35 (2): 196-210

    Abstract

    Risk factors increase the incidence and severity of chronic disease. To examine future trends and develop policies addressing chronic diseases, it is important to capture the relationship between exposure and disease development, which is challenging given limited data.To develop parsimonious risk factor models embeddable in chronic disease models, which are useful when longitudinal data are unavailable.The model structures encode relevant features of risk factors (e.g., time-varying, modifiable) and can be embedded in chronic disease models. Calibration captures time-varying exposures for the risk factor models using available cross-sectional data. We illustrate feasibility with the policy-relevant example of smoking in India.The model is calibrated to the prevalence of male smoking in 12 Indian regions estimated from the 2009-2010 Indian Global Adult Tobacco Survey. Nelder-Mead searches (250,000 starting locations) identify distributions of starting, quitting, and restarting rates that minimize the difference between modeled and observed age-specific prevalence. We compare modeled life expectancies to estimates in the absence of time-varying risk exposures and consider gains from hypothetical smoking cessation programs delivered for 1 to 30 years.Calibration achieves concordance between modeled and observed outcomes. Probabilities of starting to smoke rise and fall with age, while quitting and restarting probabilities fall with age. Accounting for time-varying smoking exposures is important, as not doing so produces smaller estimates of life expectancy losses. Estimated impacts of smoking cessation programs delivered for different periods depend on the fact that people who have been induced to abstain from smoking longer are less likely to restart.The approach described is feasible for important risk factors for numerous chronic diseases. Incorporating exposure-change rates can improve modeled estimates of chronic disease outcomes and of the long-term effects of interventions targeting risk factors.

    View details for DOI 10.1177/0272989X13518272

    View details for Web of Science ID 000348054300010

    View details for PubMedID 24477078

  • HIV Treatment and Prevention: A Simple Model to Determine Optimal Investment. Medical decision making : an international journal of the Society for Medical Decision Making Juusola, J. L., Brandeau, M. L. 2015

    Abstract

    To create a simple model to help public health decision makers determine how to best invest limited resources in HIV treatment scale-up and prevention.A linear model was developed for determining the optimal mix of investment in HIV treatment and prevention, given a fixed budget. The model incorporates estimates of secondary health benefits accruing from HIV treatment and prevention and allows for diseconomies of scale in program costs and subadditive benefits from concurrent program implementation. Data sources were published literature. The target population was individuals infected with HIV or at risk of acquiring it. Illustrative examples of interventions include preexposure prophylaxis (PrEP), community-based education (CBE), and antiretroviral therapy (ART) for men who have sex with men (MSM) in the US. Outcome measures were incremental cost, quality-adjusted life-years gained, and HIV infections averted.Base case analysis indicated that it is optimal to invest in ART before PrEP and to invest in CBE before scaling up ART. Diseconomies of scale reduced the optimal investment level. Subadditivity of benefits did not affect the optimal allocation for relatively low implementation levels. The sensitivity analysis indicated that investment in ART before PrEP was optimal in all scenarios tested. Investment in ART before CBE became optimal when CBE reduced risky behavior by 4% or less. Limitations of the study are that dynamic effects are approximated with a static model.Our model provides a simple yet accurate means of determining optimal investment in HIV prevention and treatment. For MSM in the US, HIV control funds should be prioritized on inexpensive, effective programs like CBE, then on ART scale-up, with only minimal investment in PrEP.

    View details for DOI 10.1177/0272989X15598528

    View details for PubMedID 26369347

  • Optimizing patient treatment decisions in an era of rapid technological advances: the case of hepatitis C treatment. Health care management science Liu, S., Brandeau, M. L., Goldhaber-Fiebert, J. D. 2015

    Abstract

    How long should a patient with a treatable chronic disease wait for more effective treatments before accepting the best available treatment? We develop a framework to guide optimal treatment decisions for a deteriorating chronic disease when treatment technologies are improving over time. We formulate an optimal stopping problem using a discrete-time, finite-horizon Markov decision process. The goal is to maximize a patient's quality-adjusted life expectancy. We derive structural properties of the model and analytically solve a three-period treatment decision problem. We illustrate the model with the example of treatment for chronic hepatitis C virus (HCV). Chronic HCV affects 3-4 million Americans and has been historically difficult to treat, but increasingly effective treatments have been commercialized in the past few years. We show that the optimal treatment decision is more likely to be to accept currently available treatment-despite expectations for future treatment improvement-for patients who have high-risk history, who are older, or who have more comorbidities. Insights from this study can guide HCV treatment decisions for individual patients. More broadly, our model can guide treatment decisions for curable chronic diseases by finding the optimal treatment policy for individual patients in a heterogeneous population.

    View details for DOI 10.1007/s10729-015-9330-6

    View details for PubMedID 26188961

  • Creating impact with operations research in health: making room for practice in academia. Health care management science Brandeau, M. L. 2015

    Abstract

    Operations research (OR)-based analyses have the potential to improve decision making for many important, real-world health care problems. However, junior scholars often avoid working on practical applications in health because promotion and tenure processes tend to value theoretical studies more highly than applied studies. This paper discusses the author's experiences in using OR to inform and influence decisions in health and provides a blueprint for junior researchers who wish to find success by taking a similar path. This involves selecting good problems to study, forming productive collaborations with domain experts, developing appropriate models, identifying the most salient results from an analysis, and effectively disseminating findings to decision makers. The paper then suggests how journals, funding agencies, and senior academics can encourage such work by taking a broader and more informed view of the potential role and contributions of OR to solving health care problems. Making room in academia for the application of OR in health follows in the tradition begun by the founders of operations research: to work on important real-world problems where operations research can contribute to better decision making.

    View details for DOI 10.1007/s10729-015-9328-0

    View details for PubMedID 26003321

  • HIV epidemic control-a model for optimal allocation of prevention and treatment resources HEALTH CARE MANAGEMENT SCIENCE Alistar, S. S., Long, E. F., Brandeau, M. L., Beck, E. J. 2014; 17 (2): 162-181

    Abstract

    With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.

    View details for DOI 10.1007/s10729-013-9240-4

    View details for Web of Science ID 000341086500006

    View details for PubMedID 23793895

  • Expanded HIV Testing in Low-Prevalence, High-Income Countries: A Cost-Effectiveness Analysis for the United Kingdom PLOS ONE Long, E. F., Mandalia, R., Mandalia, S., Alistar, S. S., Beck, E. J., Brandeau, M. L. 2014; 9 (4)

    Abstract

    In many high-income countries with low HIV prevalence, significant numbers of persons living with HIV (PLHIV) remain undiagnosed. Identification of PLHIV via HIV testing offers timely access to lifesaving antiretroviral therapy (ART) and decreases HIV transmission. We estimated the effectiveness and cost-effectiveness of HIV testing in the United Kingdom (UK), where 25% of PLHIV are estimated to be undiagnosed.We developed a dynamic compartmental model to analyze strategies to expand HIV testing and treatment in the UK, with particular focus on men who have sex with men (MSM), people who inject drugs (PWID), and individuals from HIV-endemic countries.We estimated HIV prevalence, incidence, quality-adjusted life years (QALYs), and health care costs over 10 years, and cost-effectiveness.Annual HIV testing of all adults could avert 5% of new infections, even with no behavior change following HIV diagnosis because of earlier ART initiation, or up to 18% if risky behavior is halved. This strategy costs £67,000-£106,000/QALY gained. Providing annual testing only to MSM, PWID, and people from HIV-endemic countries, and one-time testing for all other adults, prevents 4-15% of infections, requires one-fourth as many tests to diagnose each PLHIV, and costs £17,500/QALY gained. Augmenting this program with increased ART access could add 145,000 QALYs to the population over 10 years, at £26,800/QALY gained.Annual HIV testing of key populations in the UK is very cost-effective. Additional one-time testing of all other adults could identify the majority of undiagnosed PLHIV. These findings are potentially relevant to other low-prevalence, high-income countries.

    View details for DOI 10.1371/journal.pone.0095735

    View details for Web of Science ID 000335505000031

    View details for PubMedID 24763373

  • Effectiveness and Cost Effectiveness of Oral Pre-Exposure Prophylaxis in a Portfolio of Prevention Programs for Injection Drug Users in Mixed HIV Epidemics PLOS ONE Alistar, S. S., Owens, D. K., Brandeau, M. L. 2014; 9 (1)

    Abstract

    Pre-exposure prophylaxis with oral antiretroviral treatment (oral PrEP) for HIV-uninfected injection drug users (IDUs) is potentially useful in controlling HIV epidemics with a significant injection drug use component. We estimated the effectiveness and cost effectiveness of strategies for using oral PrEP in various combinations with methadone maintenance treatment (MMT) and antiretroviral treatment (ART) in Ukraine, a representative case for mixed HIV epidemics.We developed a dynamic compartmental model of the HIV epidemic in a population of non-IDUs, IDUs who inject opiates, and IDUs in MMT, adding an oral PrEP program (tenofovir/emtricitabine, 49% susceptibility reduction) for uninfected IDUs. We analyzed intervention portfolios consisting of oral PrEP (25% or 50% of uninfected IDUs), MMT (25% of IDUs), and ART (80% of all eligible patients). We measured health care costs, quality-adjusted life years (QALYs), HIV prevalence, HIV infections averted, and incremental cost effectiveness. A combination of PrEP for 50% of IDUs and MMT lowered HIV prevalence the most in both IDUs and the general population. ART combined with MMT and PrEP (50% access) averted the most infections (14,267). For a PrEP cost of $950, the most cost-effective strategy was MMT, at $520/QALY gained versus no intervention. The next most cost-effective strategy consisted of MMT and ART, costing $1,000/QALY gained compared to MMT alone. Further adding PrEP (25% access) was also cost effective by World Health Organization standards, at $1,700/QALY gained. PrEP alone became as cost effective as MMT at a cost of $650, and cost saving at $370 or less.Oral PrEP for IDUs can be part of an effective and cost-effective strategy to control HIV in regions where injection drug use is a significant driver of the epidemic. Where budgets are limited, focusing on MMT and ART access should be the priority, unless PrEP has low cost.

    View details for DOI 10.1371/journal.pone.0086584

    View details for Web of Science ID 000330510000062

    View details for PubMedID 24489747

  • Too Much of a Good Thing? When to Stop Catch-Up Vaccination MEDICAL DECISION MAKING Hutton, D. W., Brandeau, M. L. 2013; 33 (7): 920-936

    Abstract

    During the 20th century, deaths from a range of serious infectious diseases decreased dramatically due to the development of safe and effective vaccines. However, infant immunization coverage has increased only marginally since the 1960s, and many people remain susceptible to vaccine-preventable diseases. "Catch-up vaccination" for age groups beyond infancy can be an attractive and effective means of immunizing people who were missed earlier. However, as newborn vaccination rates increase, catch-up vaccination becomes less attractive: the number of susceptible people decreases, so the cost to find and vaccinate each unvaccinated person may increase; in addition, the number of infected individuals decreases, so each unvaccinated person faces a lower risk of infection. This article presents a general framework for determining the optimal time to discontinue a catch-up vaccination program. We use a cost-effectiveness framework: we consider the cost per quality-adjusted life year gained of catch-up vaccination efforts as a function of newborn immunization rates over time and consequent disease prevalence and incidence. We illustrate our results with the example of hepatitis B catch-up vaccination in China. We contrast results from a dynamic modeling approach with an approach that ignores the impact of vaccination on future disease incidence. The latter approach is likely to be simpler for decision makers to understand and implement because of lower data requirements.

    View details for DOI 10.1177/0272989X13493142

    View details for Web of Science ID 000324535200004

    View details for PubMedID 23858015

  • National Biodefense Science Board/Board of Scientific Counselors Strategic National Stockpile 2020 Joint Working Group. Anticipated Responsibilities of the Strategic National Stockpile (SNS) in the Year 2020 – An Examination with Recommendations. Washington, DC Brandeau, M., L. 2013
  • Too much of a good thing? When to stop catch-up vaccination. Medical Decision Making Hutton, D., W., Brandeau, M., L. 2013; 7 (33): 920-936.
  • REACH: A practical HIV resource allocation tool for decision makers. In Operations Research and Health Care Policy Alistar, S., S., Brandeau, M., L., Beck, E., J. edited by Zaric, G., S. Springer Publishers, New York. 2013: 201-224.
  • Are organic foods safer or healthier? [Letter]. [Letter]. Annals of Internal Medicine. Smith-Spangler, C., Brandeau, M., L., Olkin, I., Bravata, D., M. 2013; 4 (158): 297-300.
  • OR in public health: A little help can go a long way. In Operations Research and Health Care Policy Brandeau, M., L. edited by Zaric, G., S. Springer Publishers, New York. 2013: 17-38.
  • HIV epidemic control: A model for optimal allocation of prevention and treatment resources. Health Care Management Science, Epub ahead of print. Alistar, S., S., Long, E., F., Brandeau, M., L., Beck, E., J. 2013
  • Balancing Immunological Benefits and Cardiovascular Risks of Antiretroviral Therapy: When Is Immediate Treatment Optimal? CLINICAL INFECTIOUS DISEASES Negoescu, D. M., Owens, D. K., Brandeau, M. L., Bendavid, E. 2012; 55 (10): 1392-1399

    Abstract

    We developed a mathematical model to identify the timing of antiretroviral therapy (ART) initiation that optimizes patient outcomes as a function of patient CD4 count, age, cardiac mortality risk, sex, and personal preferences. Our goal was to find the conditions that maximize patient quality-adjusted life expectancy (QALE) in the context of our model. Under the assumption that ART confers disease progression and mortality benefits at any CD4 count, immediate treatment initiation yields the greatest remaining QALE for young patients under most circumstances. The timing of ART initiation depends on the magnitude of benefit from ART at high CD4 counts, the magnitude of increases in cardiac risk, and patients' preferences. If ART reduces HIV progression at high CD4 counts, immediate ART is preferable for most newly infected individuals <35 years even if ART doubles age- and sex-specific cardiac risk.

    View details for DOI 10.1093/cid/cis731

    View details for Web of Science ID 000310374600023

    View details for PubMedID 22942203

  • Cost Effectiveness of Screening Strategies for Early Identification of HIV and HCV Infection in Injection Drug Users PLOS ONE Cipriano, L. E., Zaric, G. S., Holodniy, M., Bendavid, E., Owens, D. K., Brandeau, M. L. 2012; 7 (9)

    Abstract

    To estimate the cost, effectiveness, and cost effectiveness of HIV and HCV screening of injection drug users (IDUs) in opioid replacement therapy (ORT).Dynamic compartmental model of HIV and HCV in a population of IDUs and non-IDUs for a representative U.S. urban center with 2.5 million adults (age 15-59).We considered strategies of screening individuals in ORT for HIV, HCV, or both infections by antibody or antibody and viral RNA testing. We evaluated one-time and repeat screening at intervals from annually to once every 3 months. We calculated the number of HIV and HCV infections, quality-adjusted life years (QALYs), costs, and incremental cost-effectiveness ratios (ICERs).Adding HIV and HCV viral RNA testing to antibody testing averts 14.8-30.3 HIV and 3.7-7.7 HCV infections in a screened population of 26,100 IDUs entering ORT over 20 years, depending on screening frequency. Screening for HIV antibodies every 6 months costs $30,700/QALY gained. Screening for HIV antibodies and viral RNA every 6 months has an ICER of $65,900/QALY gained. Strategies including HCV testing have ICERs exceeding $100,000/QALY gained unless awareness of HCV-infection status results in a substantial reduction in needle-sharing behavior.Although annual screening for antibodies to HIV and HCV is modestly cost effective compared to no screening, more frequent screening for HIV provides additional benefit at less cost. Screening individuals in ORT every 3-6 months for HIV infection using both antibody and viral RNA technologies and initiating ART for acute HIV infection appears cost effective.

    View details for DOI 10.1371/journal.pone.0045176

    View details for Web of Science ID 000311313900091

    View details for PubMedID 23028828

  • Are organic foods safer or healthier than conventional alternatives?: a systematic review. Annals of internal medicine Smith-Spangler, C., Brandeau, M. L., Hunter, G. E., Bavinger, J. C., Pearson, M., Eschbach, P. J., Sundaram, V., Liu, H., Schirmer, P., Stave, C., Olkin, I., Bravata, D. M. 2012; 157 (5): 348-366

    Abstract

    The health benefits of organic foods are unclear.To review evidence comparing the health effects of organic and conventional foods.MEDLINE (January 1966 to May 2011), EMBASE, CAB Direct, Agricola, TOXNET, Cochrane Library (January 1966 to May 2009), and bibliographies of retrieved articles.English-language reports of comparisons of organically and conventionally grown food or of populations consuming these foods.2 independent investigators extracted data on methods, health outcomes, and nutrient and contaminant levels.17 studies in humans and 223 studies of nutrient and contaminant levels in foods met inclusion criteria. Only 3 of the human studies examined clinical outcomes, finding no significant differences between populations by food type for allergic outcomes (eczema, wheeze, atopic sensitization) or symptomatic Campylobacter infection. Two studies reported significantly lower urinary pesticide levels among children consuming organic versus conventional diets, but studies of biomarker and nutrient levels in serum, urine, breast milk, and semen in adults did not identify clinically meaningful differences. All estimates of differences in nutrient and contaminant levels in foods were highly heterogeneous except for the estimate for phosphorus; phosphorus levels were significantly higher than in conventional produce, although this difference is not clinically significant. The risk for contamination with detectable pesticide residues was lower among organic than conventional produce (risk difference, 30% [CI, -37% to -23%]), but differences in risk for exceeding maximum allowed limits were small. Escherichia coli contamination risk did not differ between organic and conventional produce. Bacterial contamination of retail chicken and pork was common but unrelated to farming method. However, the risk for isolating bacteria resistant to 3 or more antibiotics was higher in conventional than in organic chicken and pork (risk difference, 33% [CI, 21% to 45%]).Studies were heterogeneous and limited in number, and publication bias may be present.The published literature lacks strong evidence that organic foods are significantly more nutritious than conventional foods. Consumption of organic foods may reduce exposure to pesticide residues and antibiotic-resistant bacteria.None.

    View details for DOI 10.7326/0003-4819-157-5-201209040-00007

    View details for PubMedID 22944875

  • The Cost-Effectiveness of Preexposure Prophylaxis for HIV Prevention in the United States in Men Who Have Sex With Men ANNALS OF INTERNAL MEDICINE Juusola, J. L., Brandeau, M. L., Owens, D. K., Bendavid, E. 2012; 156 (8): 541-U144

    Abstract

    A recent randomized, controlled trial showed that daily oral preexposure chemoprophylaxis (PrEP) was effective for HIV prevention in men who have sex with men (MSM). The Centers for Disease Control and Prevention recently provided interim guidance for PrEP in MSM at high risk for HIV. Previous studies did not reach a consistent estimate of its cost-effectiveness.To estimate the effectiveness and cost-effectiveness of PrEP in MSM in the United States.Dynamic model of HIV transmission and progression combined with a detailed economic analysis.Published literature.MSM aged 13 to 64 years in the United States.Lifetime.Societal.PrEP was evaluated in both the general MSM population and in high-risk MSM and was assumed to reduce infection risk by 44% on the basis of clinical trial results.New HIV infections, discounted quality-adjusted life-years (QALYs) and costs, and incremental cost-effectiveness ratios.Initiating PrEP in 20% of MSM in the United States would reduce new HIV infections by an estimated 13% and result in a gain of 550,166 QALYs over 20 years at a cost of $172,091 per QALY gained. Initiating PrEP in a larger proportion of MSM would prevent more infections but at an increasing cost per QALY gained (up to $216,480 if all MSM receive PrEP). Preexposure chemoprophylaxis in only high-risk MSM can improve cost-effectiveness. For MSM with an average of 5 partners per year, PrEP costs approximately $50,000 per QALY gained. Providing PrEP to all high-risk MSM for 20 years would cost $75 billion more in health care-related costs than the status quo and $600,000 per HIV infection prevented, compared with incremental costs of $95 billion and $2 million per infection prevented for 20% coverage of all MSM.PrEP in the general MSM population would cost less than $100,000 per QALY gained if the daily cost of antiretroviral drugs for PrEP was less than $15 or if PrEP efficacy was greater than 75%.When examining PrEP in high-risk MSM, the investigators did not model a mix of low- and high-risk MSM because of lack of data on mixing patterns.PrEP in the general MSM population could prevent a substantial number of HIV infections, but it is expensive. Use in high-risk MSM compares favorably with other interventions that are considered cost-effective but could result in annual PrEP expenditures of more than $4 billion.National Institute on Drug Abuse, Department of Veterans Affairs, and National Institute of Allergy and Infectious Diseases.

    View details for DOI 10.1059/0003-4819-156-8-201204170-00001

    View details for Web of Science ID 000303151800013

    View details for PubMedID 22508731

  • Optimal link removal for epidemic mitigation: A two-way partitioning approach MATHEMATICAL BIOSCIENCES Enns, E. A., Mounzer, J. J., Brandeau, M. L. 2012; 235 (2): 138-147

    Abstract

    The structure of the contact network through which a disease spreads may influence the optimal use of resources for epidemic control. In this work, we explore how to minimize the spread of infection via quarantining with limited resources. In particular, we examine which links should be removed from the contact network, given a constraint on the number of removable links, such that the number of nodes which are no longer at risk for infection is maximized. We show how this problem can be posed as a non-convex quadratically constrained quadratic program (QCQP), and we use this formulation to derive a link removal algorithm. The performance of our QCQP-based algorithm is validated on small Erd?s-Renyi and small-world random graphs, and then tested on larger, more realistic networks, including a real-world network of injection drug use. We show that our approach achieves near optimal performance and out-performs other intuitive link removal algorithms, such as removing links in order of edge centrality.

    View details for DOI 10.1016/j.mbs.2011.11.006

    View details for Web of Science ID 000301020300003

    View details for PubMedID 22115862

  • Decision Making for HIV Prevention and Treatment Scale up: Bridging the Gap between Theory and Practice MEDICAL DECISION MAKING Alistar, S. S., Brandeau, M. L. 2012; 32 (1): 105-117

    Abstract

    Effectively controlling the HIV epidemic will require efficient use of limited resources. Despite ambitious global goals for HIV prevention and treatment scale up, few comprehensive practical tools exist to inform such decisions.We briefly summarize modeling approaches for resource allocation for epidemic control, and discuss the practical limitations of these models. We describe typical challenges of HIV resource allocation in practice and some of the tools used by decision makers. We identify the characteristics needed in a model that can effectively support planners in decision making about HIV prevention and treatment scale up.An effective model to support HIV scale-up decisions will be flexible, with capability for parameter customization and incorporation of uncertainty. Such a model needs certain key technical features: it must capture epidemic effects; account for how intervention effectiveness depends on the target population and the level of scale up; capture benefit and cost differentials for packages of interventions versus single interventions, including both treatment and prevention interventions; incorporate key constraints on potential funding allocations; identify optimal or near-optimal solutions; and estimate the impact of HIV interventions on the health care system and the resulting resource needs. Additionally, an effective model needs a user-friendly design and structure, ease of calibration and validation, and accessibility to decision makers in all settings.Resource allocation theory can make a significant contribution to decision making about HIV prevention and treatment scale up. What remains now is to develop models that can bridge the gap between theory and practice.

    View details for DOI 10.1177/0272989X10391808

    View details for Web of Science ID 000299701100014

    View details for PubMedID 21191118

  • Assessing effectiveness and cost-effectiveness of concurrency reduction for HIV prevention INTERNATIONAL JOURNAL OF STD & AIDS Enns, E. A., Brandeau, M. L., Igeme, T. K., Bendavid, E. 2011; 22 (10): 558-567

    Abstract

    We estimated the effectiveness and cost-effectiveness of changes in concurrent sexual partnerships in reducing the spread of HIV in sub-Saharan Africa. Using data from Swaziland, Tanzania, Uganda and Zambia, we estimated country-specific concurrency behaviour from sexual behaviour survey data on the number of partners in the past 12 months, and we developed a network model to compare the impact of three behaviour changes on the HIV epidemic: (1) changes in concurrent partnership patterns to strict monogamy; (2) partnership reduction among those with the greatest number of partners; and (3) partnership reduction among all individuals. We estimated the number of new HIV infections over 10 years and the cost per infection averted. Given our assumptions and model structure, we find that reducing concurrency among high-risk individuals averts the most infections and increasing monogamy the least (11.7% versus 8.7% reduction in new infections, on average, for a 10% reduction in concurrent partnerships). A campaign that costs US$1 per person annually is likely cost-saving if it reduces concurrency by 9% on average, given our baseline estimates of concurrency. In sensitivity analysis, the rank ordering of behaviour change scenarios was unaffected by potential over-estimation of concurrency, though the number of infections averted decreased and the cost per HIV infection averted increased. Concurrency reduction programmes may be effective and cost-effective in reducing HIV incidence in sub-Saharan Africa if they can achieve even modest impacts at similar costs to past mass media campaigns in the region. Reduced concurrency among high-risk individuals appears to be most effective in reducing HIV incidence, but concurrency reduction in other risk groups may yield nearly as much benefit.

    View details for DOI 10.1258/ijsa.2011.010322

    View details for Web of Science ID 000296991200004

    View details for PubMedID 21998175

  • Doing Good with Good OR: Supporting Cost-Effective Hepatitis B Interventions INTERFACES Hutton, D. W., Brandeau, M. L., So, S. K. 2011; 41 (3): 289-300

    Abstract

    In an era of limited healthcare budgets, mathematical models can be useful tools to identify cost-effective programs and to support policymakers in informed decision making. This paper reports results of our work carried out over several years with the Asian Liver Center at Stanford University, a nonprofit outreach and advocacy organization that is an international leader in the fight against hepatitis B and liver cancer. Hepatitis B is a vaccine-preventable viral disease that, if untreated, can lead to death from cirrhosis and liver cancer. Infection with hepatitis B is a major public health problem, particularly in Asian populations. We used new combinations of decision analysis and Markov models to analyze the cost-effectiveness of several interventions to combat hepatitis B in the United States and China. The results of our OR-based analyses have helped change United States public health policy on hepatitis B screening for millions of people and have helped encourage policymakers in China to enact legislation to provide free catch-up vaccination for hundreds of millions of children. These policies are an important step in eliminating health disparities, reducing discrimination, and ensuring that millions of people who need it can now receive hepatitis B vaccination or lifesaving treatment.

    View details for DOI 10.1287/inte.1100.0511

    View details for Web of Science ID 000292246700007

    View details for PubMedID 21760650

  • Effectiveness and Cost Effectiveness of Expanding Harm Reduction and Antiretroviral Therapy in a Mixed HIV Epidemic: A Modeling Analysis for Ukraine PLOS MEDICINE Alistar, S. S., Owens, D. K., Brandeau, M. L. 2011; 8 (3)

    Abstract

    Injection drug use (IDU) and heterosexual virus transmission both contribute to the growing mixed HIV epidemics in Eastern Europe and Central Asia. In Ukraine-chosen in this study as a representative country-IDU-related risk behaviors cause half of new infections, but few injection drug users (IDUs) receive methadone substitution therapy. Only 10% of eligible individuals receive antiretroviral therapy (ART). The appropriate resource allocation between these programs has not been studied. We estimated the effectiveness and cost-effectiveness of strategies for expanding methadone substitution therapy programs and ART in mixed HIV epidemics, using Ukraine as a case study.We developed a dynamic compartmental model of the HIV epidemic in a population of non-IDUs, IDUs using opiates, and IDUs on methadone substitution therapy, stratified by HIV status, and populated it with data from the Ukraine. We considered interventions expanding methadone substitution therapy, increasing access to ART, or both. We measured health care costs, quality-adjusted life years (QALYs), HIV prevalence, infections averted, and incremental cost-effectiveness. Without incremental interventions, HIV prevalence reached 67.2% (IDUs) and 0.88% (non-IDUs) after 20 years. Offering methadone substitution therapy to 25% of IDUs reduced prevalence most effectively (to 53.1% IDUs, 0.80% non-IDUs), and was most cost-effective, averting 4,700 infections and adding 76,000 QALYs compared with no intervention at US$530/QALY gained. Expanding both ART (80% coverage of those eligible for ART according to WHO criteria) and methadone substitution therapy (25% coverage) was the next most cost-effective strategy, adding 105,000 QALYs at US$1,120/QALY gained versus the methadone substitution therapy-only strategy and averting 8,300 infections versus no intervention. Expanding only ART (80% coverage) added 38,000 QALYs at US$2,240/QALY gained versus the methadone substitution therapy-only strategy, and averted 4,080 infections versus no intervention. Offering ART to 80% of non-IDUs eligible for treatment by WHO criteria, but only 10% of IDUs, averted only 1,800 infections versus no intervention and was not cost effective.Methadone substitution therapy is a highly cost-effective option for the growing mixed HIV epidemic in Ukraine. A strategy that expands both methadone substitution therapy and ART to high levels is the most effective intervention, and is very cost effective by WHO criteria. When expanding ART, access to methadone substitution therapy provides additional benefit in infections averted. Our findings are potentially relevant to other settings with mixed HIV epidemics. Please see later in the article for the Editors' Summary.

    View details for DOI 10.1371/journal.pmed.1000423

    View details for Web of Science ID 000288945200004

    View details for PubMedID 21390264

  • Institute of Medicine Committee on Prepositioned Medical Countermeasures. Prepositioning Antibiotics for Anthrax. Brandeau, M., L. 2011
  • Efficient stockpiling and shipping strategies for humanitarian relief: UNHCR’s inventory challenge. OR Spectrum McCoy, J., H, Brandeau., M., L. 2011; 3 (33): 673-698.
  • Inferring model parameters in network-based disease simulation. Health Care Management Science Enns, E., A., Brandeau, M., L. 2011; 2 (14): 174-188.
  • The cost-effectiveness of symptom-based testing and routine screening for acute HIV infection in men who have sex with men in the United States. AIDS Juusola, J., L., Brandeau, M., L., Long, E., F., Owens, D., K., Bendavid, E. 2011; 14 (25): 1779-1787.
  • Cost-effective control of chronic viral diseases: Finding the optimal level of screening and contact tracing. Mathematical Biosciences Armbruster, B., Brandeau, M., L. 2010; 1 (224): 35-42.
  • Cost-effectiveness of strategies for diagnosing pulmonary embolism among emergency department patients presenting with undifferentiated symptoms. Annals of Emergency Medicine Duriseti, R., S., Brandeau, M., L. 2010; 4 (56): 321-332.
  • Comparative effectiveness of HIV testing and treatment in highly endemic regions. Archives of Internal Medicine Bendavid, E., Brandeau, M., L., Wood, R., Owens, D., K. 2010; 15 (17): 1347-1354.
  • The cost effectiveness and population outcomes of expanded HIV screening and antiretroviral treatment in the United States. Annals of Internal Medicine Long, E., F., Brandeau, M., L., Owens, D., K. 2010; 12 (153): 778-789.
  • Institute of Medicine Committee on the Prevention and Control of Viral Hepatitis Infections. Hepatitis and Liver Cancer: A National Strategy for Prevention andControl of Hepatitis B and C. Brandeau, M., L. 2010
  • Cost effectiveness of nationwide hepatitis B catchup vaccination among children and adolescents in China. Hepatology Hutton, D., W., So, S., K 2010; 2 (51): 405-414.
  • Potential population health outcomes and expenditures of HIV vaccination strategies in the United States. Vaccine Long, E., F., Brandeau, M., L., Owens, D., K. 2009; 39 (27): 5402-5410.
  • OR’s next top model: Decision models for infectious disease control. In TutORials in Operations Research Long, E., F., Brandeau., M., L. Institute for Operations Research and the Management Sciences (INFORMS). 2009: 123-138.
  • Recommendations for modeling crisis response in public health and medicine: A position paper of the Society for Medical Decision Making. Medical Decision Making Brandeau, M., L., McCoy, J., H., Hupert, N., A., Holty, J., E., Bravata, D., M. 2009; 4 (29): 438-460.
  • Optimal investment in HIV prevention programs: More is not always better. Health Care Management Science Brandeau, M., L., Zaric., G., S. 2009; 1 (12): 27-37.
  • Cost-effectiveness of voluntary HIV screening in Russia. International Journal of STD and AIDS Tole, S., P., Sanders, G., D., Bayoumi, A., M., Galvin, C., M., Vinichenko, T., N., Owens, D., K. 2009; 1 (20): 46-51.
  • An ounce of prevention is worth a pound of cure: Improving communication to reduce mortality during bioterrorism responses. American Journal of Disaster Medicine Brandeau, M., L., Zaric, G., S., Freiesleben, J. 2008; 2 (3): 65-78.
  • Optimal spending on HIV prevention and treatment: A framework for evaluating the cost-effectiveness of HIV prevention and treatment programs with example application to The India AIDS Initiative. In Optimization in Medicine and Biology Brandeau, M., L., Long, E., F., Hutton, D., W., Owens., D., K. Taylor and Francis Publishers, Boca Raton, Florida. 2008: 147-175.
  • Modeling the logistics of response to anthrax bioterrorism. Medical Decision Making Zaric, G., S., Bravata, D., M., Holty, J., E.C., McDonald, K., M., Owens, D., K., Brandeau, M., L. 2008; 3 (28): 332-350.
  • Infectious disease control policy: A role for simulation. Brandeau, M., L. 2008
  • The cost effectiveness of counseling strategies to improve adherence to highly active antiretroviral therapy among men who have sex with men. Medical Decision Making Zaric, G., S., Bayoumi, A., M., Brandeau, M., L., Owens, D., K. 2008; 3 (28): 359-376.
  • Controlling co-epidemics: Analysis of HIV and tuberculosis infection dynamics. Operations Research Long, E., F., Vaidya, N., Brandeau, M., L. 2008; 6 (56): 1366-1381.
  • Optimal mix of screening and contact tracing for endemic diseases. Mathematical Biosciences Armbruster, B., Brandeau., M., L. 2007; 2 (209): 386-402.
  • Planning the bioterrorism responsesupply chain: Learn and live. American Journal of Disaster edicine Brandeau, M., L., Hutton, D., M., Owens, D., K., Bravata, D., M. 2007; 5 (2): 231-247.
  • Who do you know? A simulation study of infectious disease control through contact tracing. Armbruster, B., Brandeau, M., L. 2007
  • From Venn diagrams to bioterrorism: An OR journey. The Operations Research Center at MIT. INFORMS Topics in Operations Research Series Brandeau, M., L. 2007: 41-46.
  • Cost effectiveness of screening and vaccinating Asian and Pacific Islander adults for hepatitis B. Annals of Internal Medicine Hutton, D., W., Tan, D., So, S., K, Brandeau, M., L. 2007; 7 (14): 460-469.
  • A little planning goes a long way: Multi-level allocation of HIV prevention resources. Medical Decision Making Zaric, G., S., Brandeau., M., L. 2007; 1 (27): 71-81.
  • Contact tracing to control infectious disease: When enough is enough. Health Care Management Science Armbruster, B., Brandeau, M., L. 2007; 4 (10): 341-355.
  • Reducing mortality from anthrax bioterrorism: Strategies for stockpiling and dispensing medical and pharmaceutical supplies. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science Bravata, D., M., Zaric, G., S., Holty, J-, E.C., Brandeau, M., L., Wilhelm, E., R., Schwartz, A. 2006; 3 (4): 244-262.
  • Value of quantitative D-dimer assays in identifying pulmonary embolism: Implications from a sequential decision model. Academic Emergency Medicine Duriseti, R., S., Shachter, R., D., Brandeau, M., L. 2006; 7 (13): 755-766.
  • Effectiveness and cost-effectiveness of strategies to expand antiretroviral therapy in St.Petersburg, Russia. AIDS Long, E., F., Brandeau, M., L., Galvin, C., M., Vinichenko, T., Tole, S., P., Schwartz, A. 2006; 17 (20): 2207-2215.
  • Evaluating the cost effectiveness of the India AIDS Initiative: A blueprint. White Paper, Gates Foundation Policy Research Network Brandeau, M., L., Chaudry, J., R., Long, E., F., Owens, D., K. 2005
  • Global HIV prevention and treatment: Planning for the future. White Paper, Gates Foundation Policy Research Network Brandeau, M., L., McDonald, K., M., Owens, D., K. 2005
  • Modeling complex medical decision problems with the Archimedes model [Editorial]. Annals of Internal Medicine Brandeau, M., L. 2005; 4 (143): 303-304.
  • Improved allocation of HIV prevention resources: Using information about prevention program production functions. Health Care Management Science Brandeau, M., L., Zaric, G., S., Angelis., V. 2005; 1 (8): 19-28.
  • Regionalization of bioterrorism preparedness and response [Summary]. Evidence Report/Technology Assessment Bravata, D., M., McDonald, K., Owens, D., K., Wilhelm, E., Brandeau, M., L., Holty, J, E.C. 2004: 96, 1-7.
  • Allocating resources to control infectious diseases. In Operations Research and Health Care: A Handbook of Methods and Applications Brandeau, M., L. Kluwer Academic Publishers. 2004: 443-464.
  • Operations Research and Health Care: A Handbook of Methods and Applications. Brandeau, M. edited by Brandeau, M., L., Sainfort, F., Pierskalla, W., P. Kluwer Academic Publishers, Norwell, MA. 2004
  • Health care delivery: Current problems and future challenges. In Operations Research and Health Care: A Handbook of Methods and Applications Brandeau, M., L., Sainfort, F., Pierskalla, W., P. Kluwer Academic Publishers. 2004: 1-14.
  • Resource allocation for control of infectious diseases in multiple independent populations: Beyond cost-effectiveness analysis. Journal of Health Economics Brandeau, M., L., Zaric, G., S., Richter., A. 2003; 4 (22): 575-598.
  • Regionalization of Bioterrorism Preparedness and Response Evidence Report/Technology Assessment) Agency for Healthcare Research and Quality, Rockville, MD Bravata, D., M., McDonald, K., Owens, D., K., Wilhelm, E., Brandeau, M., L. 2003
  • Optimal pricing for service facilities with self-optimizing customers. European Journal of Operational Research Grossman, T., A., Brandeau, M., L. 2002; 1 (141): 39-57.
  • Dynamic resource allocation for epidemic control in multiple populations. IMA Journal of Mathematics Applied to Medicine and Biology Zaric, G., S., Brandeau, M., L. 2002; 4 (19): 235-255.
  • Cost minimization and workload balancing in printed circuit board assembly. IIE Transactions Hillier, M., S., Brandeau., M., L. 2001; 7 (33): 547-557.
  • The cost-effectiveness of buprenorphine maintenance therapy for opiate addiction in the United States. Addiction Barnett, P., G., Zaric, G., S., Brandeau, M., L. 2001; 9 (96): 1267-1278.
  • AIDS policy modeling for the 21st century: An overview of key issues. Health Care Management Science Rauner, M., S., Brandeau, M., L. 2001; 3 (4): 165-180.
  • Optimal investment in a portfolio of HIV prevention programs. Medical Decision Making Zaric, G., S., Brandeau., M., L. 2001; 5 (21): 391-408.
  • Resource allocation for epidemic control over short time horizons. Mathematical Biosciences Zaric, G., S., Brandeau, M., L. 2001; 1 (171): 33-58.
  • Difficult choices, urgent needs: Optimal investment in HIV prevention programs. In Quantitative Evaluation of HIV Prevention Programs Brandeau, M., L. Yale University Press, New Haven. 2001: 128-153.
  • Optimal commonality in component design. Operations Research Thonemann, U., W., Brandeau, M., L. 2000; 1 (48): 1-19.
  • Methadone maintenance and HIV prevention: A costeffectiveness analysis. Management Science Zaric, G., S., Brandeau, M., L., Barnett, P., G. 2000; 8 (46): 1013-1031.
  • HIV transmission and the cost-effectiveness of methadone maintenance. American Journal of Public Health Zaric, G., S., Barnett, P., G., Brandeau, M., L. 2000; 7 (90): 1100-1111.
  • The cost effectiveness of voluntary prenatal and routine newborn HIV screening in th United States. Journal of AIDS and Human Retrovirology Zaric, G., S., Bayoumi, A., M., Brandeau, M., L., Owens., D., K. 2000; 5 (25): 403-416.
  • An analysis of optimal resource allocation for prevention of infection with human immunodeficiency virus in jection drug users and non-users. Medical Decision Making, Richter, A., Brandeau, M., L., Owens, D., K. 1999; 2 (19): 167-179.
  • Design of an automated shop floor material handling system with inventory considerations. Operations Research Johnson, M., E., Brandeau, M., L. 1999; 1 (47): 65-80
  • OR modeling and AIDS policy: From theory to practice. Interfaces Kahn, J., G., Brandeau, M., L., Dunn-Mortimer, J. 1998; 3 (28): 3-22.
  • Effects of relapse to high-risk behavior on the costs andbenefits of a voluntary program to screen women for HIV. Interfaces Owens, D., K., Brandeau, M., L., Sox, C., H 1998; 3 (28): 52-74.
  • Note: Optimal storage assignment policies for automated storage and retrieval systems with stochastic demands. Management Science Thonemann, U., W., Brandeau, M., L. 1998; 1 (44): 142-148.
  • Using simulation to find optimal funding levels for HIV prevention programs with different costs and effectiveness. Friedrich, C., M., Brandeau., M., L. 1998
  • Optimal component assignment and board grouping in printed circuit board manufacturing. Operations Research Hillier, M., S., Brandeau, M., L. 1998; 5 (46): 675-689.
  • The effects of protease inhibitors on the spread of HIV and the development of drug-resistant HIV strains: A simulation study. Simulation Zaric, G., S., Brandeau, M., L., Bayoumi, A., M., Owens., D., K. 1998; 4 (71): 262-275.
  • AIDS policy modeling: A social role for operations research. Ricerca Operativa Brandeau, M., L 1998; 81-82 (27): 5-33
  • Simulating the effects of protease inhibitors on the HIV epidemic: Treatment, compliance, and drug resistance. Zaric, G., S., Brandeau, M., L., Bayoumi, A, M., Owens., D., K. 1998
  • Review of Network and Discrete Location – Models, Algorithms, and Applications by M.S. Daskin. Interfaces Brandeau, M., L. 1997; 1 (27): 157-158.
  • Designing a zoned automated guided vehicle system with multiple vehicles and multiple load capacity. Operations Research Thonemann, U., W., Brandeau, M., L. 1997; 6 (45): 857-873.
  • Designing a single-vehicle automated guided vehicle system with multiple load capacity. Transportation Science Thonemann, U., W., Brandeau, M., L. 1996; 4 (30): 351-363.
  • Policy analysis of preventive HIV interventions targeted to adolescents. Richter, A., Brandeau, M., L., Owens., D., K. 1996
  • Stochastic modeling for automated material handling systemdesign and control. Transportation Science Johnson, M., E., Brandeau, M., L. 1996; 4 (30): 330-350.
  • Designing multiple-load automated guided vehicle systems for delivering material from a central depot. Transactions of the ASME: Journal of Engineering for Industry Johnson, M., E., Brandeau, M., L 1995; 1 (117): 33-41.
  • Location with market externalities. In Facility Location: A Survey of Applications and Methods Brandeau, M., L., Chiu, S., S., Kumar, S., Grossman., T., A. Springer-Verlag, New York, NY. 1995: 121-150.
  • AIDS policy modeling by example. AIDS Kaplan, E., H., Brandeau, M., L 1994; Suppl 1 (8): S333-S340.
  • An analytic model for design and analysis of single-vehicle asynchronous material handling systems. Transportation Science Johnson, M., E., Brandeau, M., L 1994; 4 (28): 337-353.
  • When women return to risk: Costs and benefits of HIV screening in the presence of relapse. In Modeling the AIDS Epidemic: Planning, Policy and Prediction Brandeau, M., L., Owens., D., K. Raven Press, New York, NY. 1994: 121-136
  • An approach for worst case analysis of heuristics: Analysis of a flexible 0-1 knapsack problem. Journal of the Operations Research Society of Japan Lai, T., C., Brandeau, M., L., Chiu, S. 1994; 3 (37): 197-210.
  • Location of competing facilities in a user-optimizing environment with market externalities. Transportation Science Brandeau, M., L., Chiu, S., S 1994; 2 (28): 125-140.
  • Facility location in a user-optimizing environment with market externalities: Analysis of customer equilibria and optimal public facility locations. Location Science Brandeau, M., L., Chiu, S., S 1994; 3 (2): 129-147.
  • Modeling the AIDS Epidemic: Planning, Policy and Prediction. Brandeau, M. edited by Kaplan, E., H., Brandeau, M., L. Raven Press, New York, NY. 1994
  • Application of analytic models for material handling system design: Analysis of stochastic effects. In Progress in Material Handling Research, Braun-Brumfield, Inc., Ann Arbor, MI Johnson, M., E., Brandeau, M., L. 1993: 97-120
  • Sequential location and allocation: Worst case performance and statistical estimation. Location Science Brandeau, M., L., Chiu, S., S 1993; 4 (1): 289-298
  • Screening women of childbearing age for human immunodeficiency virus: A model-based policy analysis. Management Science Brandeau, M., L., Owens, D., K., Sox, C., H., Wachter, R., M. 1993; 1 (39): 72-92.
  • PR for OR/MS: How can you get involved? OR/MS Today Brandeau, M., L. 1993: 68-69.
  • An analytic model for design of a multivehicle automated guided vehicle system. Management Science Johnson, M., E., Brandeau, M., L. 1993; 12 (39): 1477-1489.
  • Strategic production planning: Operation assignment and product grouping. Brandeau, M., L., Hillier, M., S. 1993
  • AIDS: Thoughts on managing a deadly epidemic. OR/MS Today. Kaplan, E., H., Brandeau, M., L. 1992: 50-52.
  • A center location problem with congestion. Annals of Operations Research Brandeau, M., L., Chiu, S., S. 1992; 1 (40): 17-32.
  • Application of analytic models for material handling system design: Analysis of stochastic effects. Johnson, M., E., Brandeau., M., L. 1992
  • Screening women of childbearing age for human immunodeficiency virus: A cost-benefit analysis. Archives of Internal Medicine Brandeau, M., L., Owens, D., K., Sox, C., H., Wachter, R., M 1992; 11 (152): 2229-2237
  • Characterization of the stochastic queue median trajectory in a plane with generalized distances. Operations Research Brandeau, M., L. 1992; 2 (40): 331-341.
  • Integrated design and control of automated guided vehicle systems. Planning and Control of Material Handling Systems Johnson, M., E., Brandeau., M., L. American Society of Manufacturing Engineers. 1992: 17-32.
  • Analytical models for design of automated guided vehicle systems. Brandeau, M., L., Johnson, M., E. 1992
  • A policy model of human immunodeficiency virus screening and intervention. Interfaces Brandeau, M., L., Lee, H., L., Owens, D., K., Sox, C., H., Wachter, R., M 1991; 3 (21): 5-25.
  • Parametric analysis of optimal facility locations. Networks Brandeau, M., L., Chiu, S., S. 1991; 2 (21): 223-243.
  • Design of manufacturing cells: Operation assignment in printed circuit board manufacturing. Journal of Intelligent Manufacturing, Brandeau, M., L., Billington, C., A 1991; 2 (2): 95-106
  • HIV testing of pregnant women and newborns [Letter]. Journal of the American Medical Association Wachter, R., M., Cooke, M., Brandeau, M., L., Owens, D., K. 1991; 265: 1525
  • A unified family of single-server queuing location models. Operations Research Brandeau, M., L., Chiu, S., S. 1990; 6 (38): 1034-1044.
  • Trajectory analysis of the stochastic queue median in a plane with rectilinear distances. Transportation Science Brandeau, M., L., Chiu, S., S. 1990; 3 (24): 230-243
  • Policy analysis of human immunodeficiency virus screening and intervention: An overview of modeling approaches. AIDS and Public Policy Journal Brandeau, M., L., Lee, H., L., Owens, D., K., Sox, C., H., Wachter, R., M 1990; 3 (5): 119-131.
  • An overview of representative problems in location research [Extended abstract]. OR/MS Today Brandeau, M., L., Chiu, S., S. 1989: 57-58.
  • An overview of representative problems in location research. Management Science Brandeau, M., L., Chiu, S., S. 1989; 6 (35): 645-674
  • Review of Operations Management for Distributed Service Networks by N. Ahituv and O. Berman. Interfaces Brandeau, M., L. 1989: 84-86.
  • A mathematical model of AIDS screening. Stanford Engineering Brandeau, M., L., Lee, H., L., Sox, C., H. 1989: 8-15.
  • Establishing continuity of certain optimal parametric facility location trajectories. Transportation Science Brandeau, M., L., Chiu, S., S. 1988; 3 (22): 224-225.
  • Parametric facility location on a tree network with an Lp norm cost function. Transportation Science Brandeau, M., L., Chiu, S., S. 1988; 1 (22): 59-69.
  • The workup of the asymptomatic patient with a positive fecal occult blood test. Medical Decision Making Brandeau, M., L., Eddy, D., M. 1987; 1 (7): 32-46.
  • An integrated budget model for medical school financial planning. Operations Research Brandeau, M., L., Hopkins, D., S.P., Melmon, K., W. 1987; 5 (35): 684-703.
  • Extending and applying the Hypercube Queueing Model to deploy ambulances in Boston. In Management Science and the Delivery of Urban Service, Vol. 22, 121-154, North- Holland/Elsevier, 1986. Brandeau, M., L., Larson., R., C. TIMS Studies in the Management Sciences Series, North-Holland/Elsevier,. 1986: 121-154
  • Locating the two-median of a tree network with continuous link demands. Annals of Operations Research Brandeau, M., L., Chiu, S., S., Batta, R. 1986; 7 (6): 223-253.
  • A patient mix model for hospital financial planning Inquiry Brandeau, M., L., Hopkins, D., S. 1984; 1 (21): 32-44
  • A National Assessment of Police Command, Control, and Communications Systems. National Institute of Justice, Washington, DC Colton, K., W., Brandeau, M., L., Tien, J., M. 1983