Bio


Maria Sakovsky's work focuses on the use of shape adaptation to realize space structures with reconfigurable geometry, stiffness, and even non-mechanical performance (ex. electromagnetic, optical). Particular focus is placed on the mechanics of thin fiber reinforced composite structures, the interplay between composite material properties and structural geometry, as well as embedded functionality and actuation of lightweight structures. The work has led to applications in deployable space structures, reconfigurable antennas, and soft robotics.

Maria Sakovsky received her BSc in Aerospace Engineering from the University of Toronto. Following this, she completed her MSc and PhD in Space Engineering at Caltech, where she developed a deployable satellite antenna based on origami concepts utilizing elastomer composites. She concurrently worked with NASA’s Jet Propulsion Laboratory on developing cryogenically rated thin-​ply composite antennas for deep space missions. For her ongoing research on physically reconfigurable antennas, she was awarded the ETH Zürich postdoctoral fellowship as well as the Innovation Starting Grant.

Academic Appointments


Stanford Advisees


All Publications


  • Thin ply composite materials with embedded functional elements for cryogenic environments MATERIALS LETTERS Sakovsky, M., Mihaly, J. 2023; 330
  • A Highly Multi-Stable Meta-Structure via Anisotropy for Large and Reversible Shape Transformation. Advanced science (Weinheim, Baden-Wurttemberg, Germany) Risso, G., Sakovsky, M., Ermanni, P. 2022: e2202740

    Abstract

    Shape transformation offers the possibility of realizing devices whose 3D shape can be altered to adapt to different environments. Many applications would profit from reversible and actively controllable shape transformation together with a self-locking capability. Solutions that combine such properties are rare. Here, a novel class of meta-structures that can tackle this challenge is presented thanks to multi-stability. Results demonstrate that the multi-stability of the meta-structure is strictly tied to the use of highly anisotropic materials. The design rules that enable large-shape transformation, programmability, and self-locking are derived, and it is proven that the shapes can be actively controlled and harnessed to realize inchworm-inspired locomotion by strategically actuating the meta-structure. This study provides routes toward novel shape adaptive lightweight structures where a metamaterial-inspired assembly of anisotropic components leads to an unforeseen combination of properties, with potential applications in reconfigurable space structures, building facades, antennas, lenses, and softrobots.

    View details for DOI 10.1002/advs.202202740

    View details for PubMedID 35861407

  • A thin -shell shape adaptable composite metamaterial COMPOSITE STRUCTURES Sakovsky, M., Ermanni, P. 2020; 246