Stanford Advisors


All Publications


  • Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature Kronenfeld, J. M., Rother, L., Saccone, M. A., Dulay, M. T., DeSimone, J. M. 2024; 627 (8003): 306-312

    Abstract

    Particle fabrication has attracted recent attention owing to its diverse applications in bioengineering1,2, drug and vaccine delivery3-5, microfluidics6,7, granular systems8,9, self-assembly5,10,11, microelectronics12,13 and abrasives14. Herein we introduce a scalable, high-resolution, 3D printing technique for the fabrication of shape-specific particles based on roll-to-roll continuous liquid interface production (r2rCLIP). We demonstrate r2rCLIP using single-digit, micron-resolution optics in combination with a continuous roll of film (in lieu of a static platform), enabling the rapidly permutable fabrication and harvesting of shape-specific particles from a variety of materials and withcomplex geometries, including geometries not possible to achieve with advanced mould-based techniques. We demonstrate r2rCLIP production of mouldable and non-mouldable shapes with voxel sizes as small as 2.0*2.0m2 in the print plane and 1.1±0.3m unsupported thickness, at speeds of up to 1,000,000particles per day. Such microscopic particles with permutable, intricate designs enable direct integration within biomedical, analytical and advanced materials applications.

    View details for DOI 10.1038/s41586-024-07061-4

    View details for PubMedID 38480965