Bio


Michael Fischbach is an Associate Professor in the Department of Bioengineering at Stanford University and a member of Stanford ChEM-H. Fischbach is a recipient of the NIH Director's Pioneer and New Innovator Awards, an HHMI-Simons Faculty Scholars Award, a Fellowship for Science and Engineering from the David and Lucille Packard Foundation, a Medical Research Award from the W.M. Keck Foundation, a Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease award, and a Glenn Award for Research in Biological Mechanisms of Aging. His laboratory uses a combination of genomics and chemistry to identify and characterize small molecules from microbes, with an emphasis on the human microbiome. Fischbach received his Ph.D. as a John and Fannie Hertz Foundation Fellow in chemistry from Harvard in 2007, where he studied the role of iron acquisition in bacterial pathogenesis and the biosynthesis of antibiotics. Before coming to UCSF, he spent two years as an independent fellow at Massachusetts General Hospital coordinating a collaborative effort based at the Broad Institute to develop genomics-based approaches to the discovery of small molecules from microbes. Fischbach is a member of the board of directors of Achaogen, the scientific advisory boards of NGM Biopharmaceuticals, Cell Design Labs, and Indigo Agriculture, and is a co-founder of Revolution Medicines.

Academic Appointments


2017-18 Courses


Stanford Advisees


All Publications


  • Discovery of Reactive Microbiota-Derived Metabolites that Inhibit Host Proteases CELL Guo, C., Chang, F., Wyche, T. P., Backus, K. M., Acker, T. M., Funabashi, M., Taketani, M., Donia, M. S., Nayfach, S., Pollard, K. S., Craik, C. S., Cravatt, B. F., Clardy, J., Voigt, C. A., Fischbach, M. A. 2017; 168 (3): 517-?

    Abstract

    The gut microbiota modulate host biology in numerous ways, but little is known about the molecular mediators of these interactions. Previously, we found a widely distributed family of nonribosomal peptide synthetase gene clusters in gut bacteria. Here, by expressing a subset of these clusters in Escherichia coli or Bacillus subtilis, we show that they encode pyrazinones and dihydropyrazinones. At least one of the 47 clusters is present in 88% of the National Institutes of Health Human Microbiome Project (NIH HMP) stool samples, and they are transcribed under conditions of host colonization. We present evidence that the active form of these molecules is the initially released peptide aldehyde, which bears potent protease inhibitory activity and selectively targets a subset of cathepsins in human cell proteomes. Our findings show that an approach combining bioinformatics, synthetic biology, and heterologous gene cluster expression can rapidly expand our knowledge of the metabolic potential of the microbiota while avoiding the challenges of cultivating fastidious commensals.

    View details for DOI 10.1016/j.cell.2016.12.021

    View details for Web of Science ID 000396249600017

    View details for PubMedID 28111075

    View details for PubMedCentralID PMC5302092

  • Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota CELL HOST & MICROBE Devlin, A. S., Marcobal, A., Dodd, D., Nayfach, S., Plummer, N., Meyer, T., Pollard, K. S., Sonnenburg, J. L., Fischbach, M. A. 2016; 20 (6): 709-715

    Abstract

    Renal disease is growing in prevalence and has striking co-morbidities with metabolic and cardiovascular disease. Indoxyl sulfate (IS) is a toxin that accumulates in plasma when kidney function declines and contributes to the progression of chronic kidney disease. IS derives exclusively from the gut microbiota. Bacterial tryptophanases convert tryptophan to indole, which is absorbed and modified by the host to produce IS. Here, we identify a widely distributed family of tryptophanases in the gut commensal Bacteroides and find that deleting this gene eliminates the production of indole in vitro. By altering the status or abundance of the Bacteroides tryptophanase, we can modulate IS levels in gnotobiotic mice and in the background of a conventional murine gut community. Our results demonstrate that it is possible to control host IS levels by targeting the microbiota and suggest a possible strategy for treating renal disease.

    View details for DOI 10.1016/j.chom.2016.10.021

    View details for Web of Science ID 000392843500008

    View details for PubMedID 27916477

    View details for PubMedCentralID PMC5159218

  • Signaling in Host-Associated Microbial Communities CELL Fischbach, M. A., Segre, J. A. 2016; 164 (6): 1288-1300

    Abstract

    Human-associated microbiota form and stabilize communities based on interspecies interactions. We review how these microbe-microbe and microbe-host interactions are communicated to shape communities over a human's lifespan, including periods of health and disease. Modeling and dissecting signaling in host-associated communities is crucial to understand their function and will open the door to therapies that prevent or correct microbial community dysfunction to promote health and treat disease.

    View details for DOI 10.1016/j.cell.2016.02.037

    View details for Web of Science ID 000372784900025

    View details for PubMedID 26967294

    View details for PubMedCentralID PMC4801507

  • Synthetic biology to access and expand nature's chemical diversity NATURE REVIEWS MICROBIOLOGY Smanski, M. J., Zhou, H., Claesen, J., Shen, B., Fischbach, M. A., Voigt, C. A. 2016; 14 (3): 135-149

    Abstract

    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology--including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits--and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products.

    View details for DOI 10.1038/nrmicro.2015.24

    View details for Web of Science ID 000370469800008

    View details for PubMedID 26876034

    View details for PubMedCentralID PMC5048682

  • A Wave of Regulatory T Cells into Neonatal Skin Mediates Tolerance to Commensal Microbes IMMUNITY Scharschmidt, T. C., Vasquez, K. S., Truong, H., Gearty, S. V., Pauli, M. L., Nosbaum, A., Gratz, I. K., Otto, M., Moon, J. J., Liese, J., Abbas, A. K., Fischbach, M. A., Rosenblum, M. D. 2015; 43 (5): 1011-1021

    Abstract

    The skin is a site of constant dialog between the immune system and commensal bacteria. However, the molecular mechanisms that allow us to tolerate the presence of skin commensals without eliciting destructive inflammation are unknown. Using a model system to study the antigen-specific response to S. epidermidis, we demonstrated that skin colonization during a defined period of neonatal life was required for establishing immune tolerance to commensal microbes. This crucial window was characterized by an abrupt influx of highly activated regulatory T (Treg) cells into neonatal skin. Selective inhibition of this Treg cell wave completely abrogated tolerance. Thus, the host-commensal relationship in the skin relied on a unique Treg cell population that mediated tolerance to bacterial antigens during a defined developmental window. This suggests that the cutaneous microbiome composition in neonatal life is crucial in shaping adaptive immune responses to commensals, and disrupting these interactions might have enduring health implications.

    View details for DOI 10.1016/j.immuni.2015.10.016

    View details for Web of Science ID 000366846000020

    View details for PubMedID 26588783

    View details for PubMedCentralID PMC4654993

  • Mammalian Lipopolysaccharide Receptors Incorporated into the Retroviral Envelope Augment Virus Transmission CELL HOST & MICROBE Wilks, J., Lien, E., Jacobson, A. N., Fischbach, M. A., Qureshi, N., Chervonsky, A. V., Golovkina, T. V. 2015; 18 (4): 456-462

    Abstract

    The orally transmitted retrovirus mouse mammary tumor virus (MMTV) requires the intestinal microbiota for persistence. Virion-associated lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4), stimulating production of the immunosuppressive cytokine IL-10 and MMTV evasion of host immunity. However, the mechanisms by which MMTV associates with LPS remain unknown. We find that the viral envelope contains the mammalian LPS-binding factors CD14, TLR4, and MD-2, which, in conjunction with LPS-binding protein (LBP), bind LPS to the virus and augment transmission. MMTV isolated from infected mice lacking these LBPs cannot engage LPS or stimulate TLR4 and have a transmission defect. Furthermore, MMTV incorporation of a weak agonist LPS from Bacteroides, a prevalent LPS source in the gut, significantly enhances the ability of this LPS to stimulate TLR4, suggesting that MMTV intensifies these immunostimulatory properties. Thus, an orally transmitted retrovirus can capture, modify, and exploit mammalian receptors for bacterial ligands to ensure successful transmission.

    View details for DOI 10.1016/j.chom.2015.09.005

    View details for Web of Science ID 000365111600013

    View details for PubMedID 26468748

    View details for PubMedCentralID PMC4795803

  • Computational approaches to natural product discovery NATURE CHEMICAL BIOLOGY Medema, M. H., Fischbach, M. A. 2015; 11 (9): 639-648

    Abstract

    Starting with the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering longstanding questions in microbial ecology regarding the roles of metabolites in interspecies interactions.

    View details for DOI 10.1038/NCHEMBIO.1884

    View details for Web of Science ID 000359954700007

    View details for PubMedID 26284671

    View details for PubMedCentralID PMC5024737

  • A Phase-Variable Surface Layer from the Gut Symbiont Bacteroides thetaiotaomicron MBIO Taketani, M., Donia, M. S., Jacobson, A. N., Lambris, J. D., Fischbach, M. A. 2015; 6 (5)

    Abstract

    The capsule from Bacteroides, a common gut symbiont, has long been a model system for studying the molecular mechanisms of host-symbiont interactions. The Bacteroides capsule is thought to consist of an array of phase-variable polysaccharides that give rise to subpopulations with distinct cell surface structures. Here, we report the serendipitous discovery of a previously unknown surface structure in Bacteroides thetaiotaomicron: a surface layer composed of a protein of unknown function, BT1927. BT1927, which is expressed in a phase-variable manner by ~1:1,000 cells in a wild-type culture, forms a hexagonally tessellated surface layer. The BT1927-expressing subpopulation is profoundly resistant to complement-mediated killing, due in part to the BT1927-mediated blockade of C3b deposition. Our results show that the Bacteroides surface structure is capable of a far greater degree of structural variation than previously known, and they suggest that structural variation within a Bacteroides species is important for productive gut colonization.Many bacterial species elaborate a capsule, a structure that resides outside the cell wall and mediates microbe-microbe and microbe-host interactions. Species of Bacteroides, the most abundant genus in the human gut, produce a capsule that consists of an array of polysaccharides, some of which are known to mediate interactions with the host immune system. Here, we report the discovery of a previously unknown surface structure in Bacteroides thetaiotaomicron. We show that this protein-based structure is expressed by a subset of cells in a population and protects Bacteroides from killing by complement, a component of the innate immune system. This novel surface layer protein is conserved across many species of the genus Bacteroides, suggesting an important role in colonization and host immune modulation.

    View details for DOI 10.1128/mBio.01339-15

    View details for Web of Science ID 000364523100038

    View details for PubMedID 26419879

    View details for PubMedCentralID PMC4611039

  • Minimum Information about a Biosynthetic Gene cluster NATURE CHEMICAL BIOLOGY Medema, M. H., Kottmann, R., Yilmaz, P., Cummings, M., Biggins, J. B., Blin, K., de Bruijn, I., Chooi, Y. H., Claesen, J., Coates, R. C., Cruz-Morales, P., Duddela, S., Duesterhus, S., Edwards, D. J., Fewer, D. P., Garg, N., Geiger, C., Gomez-Escribano, J. P., Greule, A., Hadjithomas, M., Haines, A. S., Helfrich, E. J., Hillwig, M. L., Ishida, K., Jones, A. C., Jones, C. S., Jungmann, K., Kegler, C., Kim, H. U., Koetter, P., Krug, D., Masschelein, J., Melnik, A. V., Mantovani, S. M., Monroe, E. A., Moore, M., Moss, N., Nuetzmann, H., Pan, G., Pati, A., Petras, D., Reen, F. J., Rosconi, F., Rui, Z., Tian, Z., Tobias, N. J., Tsunematsu, Y., Wiemann, P., Wyckoff, E., Yan, X., Yim, G., Yu, F., Xie, Y., Aigle, B., Apel, A. K., Balibar, C. J., Balskus, E. P., Barona-Gomez, F., Bechthold, A., Bode, H. B., Borriss, R., Brady, S. F., Brakhage, A. A., Caffrey, P., Cheng, Y., Clardy, J., Cox, R. J., De Mot, R., Donadio, S., Donia, M. S., van der Donk, W. A., Dorrestein, P. C., Doyle, S., Driessen, A. J., Ehling-Schulz, M., Entian, K., Fischbach, M. A., Gerwick, L., Gerwick, W. H., Gross, H., Gust, B., Hertweck, C., Hofte, M., Jensen, S. E., Ju, J., Katz, L., Kaysser, L., Klassen, J. L., Keller, N. P., Kormanec, J., Kuipers, O. P., Kuzuyama, T., Kyrpides, N. C., Kwon, H., Lautru, S., Lavigne, R., Lee, C. Y., Linquan, B., Liu, X., Liu, W., Luzhetskyy, A., Mahmud, T., Mast, Y., Mendez, C., Metsa-Ketela, M., Micklefield, J., Mitchell, D. A., Moore, B. S., Moreira, L. M., Mueller, R., Neilan, B. A., Nett, M., Nielsen, J., O'Gara, F., Oikawa, H., Osbourn, A., Osburne, M. S., Ostash, B., Payne, S. M., Pernodet, J., Petricek, M., Piel, J., Ploux, O., Raaijmakers, J. M., Salas, J. A., Schmitt, E. K., Scott, B., Seipke, R. F., Shen, B., Sherman, D. H., Sivonen, K., Smanski, M. J., Sosio, M., Stegmann, E., Suessmuth, R. D., Tahlan, K., Thomas, C. M., Tang, Y., Truman, A. W., Viaud, M., Walton, J. D., Walsh, C. T., Weber, T., van Wezel, G. P., Wilkinson, B., Willey, J. M., Wohlleben, W., Wright, G. D., Ziemert, N., Zhang, C., Zotchev, S. B., Breitling, R., Takano, E., Gloeckner, F. O. 2015; 11 (9): 625-631

    View details for Web of Science ID 000359954700003

    View details for PubMedID 26284661

  • Key applications of plant metabolic engineering. PLoS biology Lau, W., Fischbach, M. A., Osbourn, A., Sattely, E. S. 2014; 12 (6)

    View details for DOI 10.1371/journal.pbio.1001879

    View details for PubMedID 24915445

  • A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME journal Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. A., Sonnenburg, J. L. 2013; 7 (10): 1933-1943

    Abstract

    Defining the functional status of host-associated microbial ecosystems has proven challenging owing to the vast number of predicted genes within the microbiome and relatively poor understanding of community dynamics and community-host interaction. Metabolomic approaches, in which a large number of small molecule metabolites can be defined in a biological sample, offer a promising avenue to 'fingerprint' microbiota functional status. Here, we examined the effects of the human gut microbiota on the fecal and urinary metabolome of a humanized (HUM) mouse using an optimized ultra performance liquid chromatography-mass spectrometry-based method. Differences between HUM and conventional mouse urine and fecal metabolomic profiles support host-specific aspects of the microbiota's metabolomic contribution, consistent with distinct microbial compositions. Comparison of microbiota composition and metabolome of mice humanized with different human donors revealed that the vast majority of metabolomic features observed in donor samples are produced in the corresponding HUM mice, and individual-specific features suggest 'personalized' aspects of functionality can be reconstituted in mice. Feeding the mice a defined, custom diet resulted in modification of the metabolite signatures, illustrating that host diet provides an avenue for altering gut microbiota functionality, which in turn can be monitored via metabolomics. Using a defined model microbiota consisting of one or two species, we show that simplified communities can drive major changes in the host metabolomic profile. Our results demonstrate that metabolomics constitutes a powerful avenue for functional characterization of the intestinal microbiota and its interaction with the host.The ISME Journal advance online publication, 6 June 2013; doi:10.1038/ismej.2013.89.

    View details for DOI 10.1038/ismej.2013.89

    View details for PubMedID 23739052

  • Production of alpha-Galactosylceramide by a Prominent Member of the Human Gut Microbiota PLOS BIOLOGY Brown, L. C., Penaranda, C., Kashyap, P. C., Williams, B. B., Clardy, J., Kronenberg, M., Sonnenburg, J. L., Comstock, L. E., Bluestone, J. A., Fischbach, M. A. 2013; 11 (7)
  • Molecular Analysis of Model Gut Microbiotas by Imaging Mass Spectrometry and Nanodesorption Electrospray Ionization Reveals Dietary Metabolite Transformations ANALYTICAL CHEMISTRY Rath, C. M., Alexandrov, T., Higginbottom, S. K., Song, J., Milla, M. E., Fischbach, M. A., Sonnenburg, J. L., Dorrestein, P. C. 2012; 84 (21): 9259-9267

    Abstract

    The communities constituting our microbiotas are emerging as mediators of the health-disease continuum. However, deciphering the functional impact of microbial communities on host pathophysiology represents a formidable challenge, due to the heterogeneous distribution of chemical and microbial species within the gastrointestinal (GI) tract. Herein, we apply imaging mass spectrometry (IMS) to localize metabolites from the interaction between the host and colonizing microbiota. This approach complements other molecular imaging methodologies in that analytes need not be known a priori, offering the possibility of untargeted analysis. Localized molecules within the GI tract were then identified in situ by surface sampling with nanodesorption electrospray ionization Fourier transform ion cyclotron resonance-mass spectrometry (nanoDESI FTICR-MS). Products from diverse structural classes were identified including cholesterol-derived lipids, glycans, and polar metabolites. Specific chemical transformations performed by the microbiota were validated with bacteria in culture. This study illustrates how untargeted spatial characterization of metabolites can be applied to the molecular dissection of complex biology in situ.

    View details for DOI 10.1021/ac302039u

    View details for Web of Science ID 000310664600055

    View details for PubMedID 23009651

    View details for PubMedCentralID PMC3711173

  • Molecular Insights into the Biosynthesis of Guadinomine: A Type III Secretion System Inhibitor JOURNAL OF THE AMERICAN CHEMICAL SOCIETY Holmes, T. C., May, A. E., Zaleta-Riyera, K., Ruby, J. G., Skewes-Cox, P., Fischbach, M. A., DeRisi, J. L., Iwatsuki, M., Omura, S., Khosla, C. 2012; 134 (42): 17797-17806

    Abstract

    Guadinomines are a recently discovered family of anti-infective compounds produced by Streptomyces sp. K01-0509 with a novel mode of action. With an IC(50) of 14 nM, guadinomine B is the most potent known inhibitor of the type III secretion system (TTSS) of Gram-negative bacteria. TTSS activity is required for the virulence of many pathogenic Gram-negative bacteria including Escherichia coli , Salmonella spp., Yersinia spp., Chlamydia spp., Vibrio spp., and Pseudomonas spp. The guadinomine (gdn) biosynthetic gene cluster has been cloned and sequenced and includes 26 open reading frames spanning 51.2 kb. It encodes a chimeric multimodular polyketide synthase, a nonribosomal peptide synthetase, along with enzymes responsible for the biosynthesis of the unusual aminomalonyl-acyl carrier protein extender unit and the signature carbamoylated cyclic guanidine. Its identity was established by targeted disruption of the gene cluster as well as by heterologous expression and analysis of key enzymes in the biosynthetic pathway. Identifying the guadinomine gene cluster provides critical insight into the biosynthesis of these scarce but potentially important natural products.

    View details for DOI 10.1021/ja308622d

    View details for Web of Science ID 000310103800078

    View details for PubMedID 23030602

    View details for PubMedCentralID PMC3483642

  • Microbiota-Targeted Therapies: An Ecological Perspective SCIENCE TRANSLATIONAL MEDICINE Lemon, K. P., Armitage, G. C., Relman, D. A., Fischbach, M. A. 2012; 4 (137)

    Abstract

    The connection between disease and the disruption of homeostatic interactions between the host and its microbiota is now well established. Drug developers and clinicians are starting to rely more heavily on therapies that directly target the microbiota and on the ecology of the microbiota to understand the outcomes of these treatments. The effects of those microbiota-targeted therapies that alter community composition range in scale from eliminating individual strains of a single species (for example, with antibacterial conjugate vaccines) to replacing the entire community with a new intact microbiota (for example, by fecal transplantation). Secondary infections linked to antibiotic use provide a cautionary tale of the unintended consequences of perturbing a microbial species network and highlight the need for new narrow-spectrum antibiotics with rapid companion diagnostics. Insights into microbial ecology will also benefit the development of probiotics, whose therapeutic prospects will depend on rigorous clinical testing. Future probiotics may take the form of a consortium of long-term community residents: "a fecal transplant in a capsule." The efficacy of microbiota-targeted therapies will need to be assessed using new diagnostic tools that measure community function rather than composition, including the temporal response of a microbial community to a defined perturbation such as an antibiotic or probiotic.

    View details for DOI 10.1126/scitranslmed.3004183

    View details for Web of Science ID 000305075700012

    View details for PubMedID 22674555

  • Eating For Two: How Metabolism Establishes lnterspecies Interactions in the Gut CELL HOST & MICROBE Fischbach, M. A., Sonnenburg, J. L. 2011; 10 (4): 336-347

    Abstract

    In bacterial communities, "tight economic times" are the norm. Of the many challenges bacteria face in making a living, perhaps none are more important than generating energy, maintaining redox balance, and acquiring carbon and nitrogen to synthesize primary metabolites. The ability of bacteria to meet these challenges depends heavily on the rest of their community. Indeed, the most fundamental way in which bacteria communicate is by importing the substrates for metabolism and exporting metabolic end products. As an illustration of this principle, we will travel down a carbohydrate catabolic pathway common to many species of Bacteroides, highlighting the interspecies interactions established (often inevitably) at its key steps. We also discuss the metabolic considerations in maintaining the stability of host-associated microbial communities.

    View details for DOI 10.1016/j.chom.2011.10.002

    View details for Web of Science ID 000296600700009

    View details for PubMedID 22018234

    View details for PubMedCentralID PMC3225337

  • Community Health Care: Therapeutic Opportunities in the Human Microbiome SCIENCE TRANSLATIONAL MEDICINE Sonnenburg, J. L., Fischbach, M. A. 2011; 3 (78)

    Abstract

    We are never alone. Humans coexist with diverse microbial species that live within and upon us--our so-called microbiota. It is now clear that this microbial community is essentially another organ that plays a fundamental role in human physiology and disease. Basic and translational research efforts have begun to focus on deciphering mechanisms of microbiome function--and learning how to manipulate it to benefit human health. In this Perspective, we discuss therapeutic opportunities in the human microbiome.

    View details for DOI 10.1126/scitranslmed.3001626

    View details for Web of Science ID 000292976400002

    View details for PubMedID 21490274

    View details for PubMedCentralID PMC3287364