Academic Appointments

All Publications

  • Combined Structural Analysis and Molecular Dynamics Reveal Penicillin-Binding Protein Inhibition Mode with ?-Lactones ACS CHEMICAL BIOLOGY Flanders, P. L., Contreras-Martel, C., Brown, N. W., Shirley, J. D., Martins, A., Nauta, K. N., Dessen, A., Carlson, E. E., Ambrose, E. A. 2022


    β-Lactam antibiotics comprise one of the most widely used therapeutic classes to combat bacterial infections. This general scaffold has long been known to inhibit bacterial cell wall biosynthesis by inactivating penicillin-binding proteins (PBPs); however, bacterial resistance to β-lactams is now widespread, and new strategies are urgently needed to target PBPs and other proteins involved in bacterial cell wall formation. A key requirement in the identification of strategies to overcome resistance is a deeper understanding of the roles of the PBPs and their associated proteins during cell growth and division, such as can be obtained with the use of selective chemical probes. Probe development has typically depended upon known PBP inhibitors, which have historically been thought to require a negatively charged moiety that mimics the C-terminus of the PBP natural peptidoglycan substrate, d-Ala-d-Ala. However, we have identified a new class of β-lactone-containing molecules that interact with PBPs, often in an isoform-specific manner, and do not incorporate this C-terminal mimetic. Here, we report a series of structural biology experiments and molecular dynamics simulations that we utilized to evaluate specific binding modes of this novel PBP inhibitor class. In this work, we obtained <2 Å resolution X-ray structures of four β-lactone probes bound to PBP1b from Streptococcus pneumoniae. Despite their diverging recognition modes beyond the site of covalent modification, these four probes all efficiently labeled PBP1b, as well as other PBPs from S. pneumoniae. From these structures, we analyzed protein-ligand interactions and characterized the β-lactone-bound active sites using in silico mutagenesis and molecular dynamics. Our approach has clarified the dynamic interaction profile in this series of ligands, expanding the understanding of PBP inhibitor binding.

    View details for DOI 10.1021/acschembio.2c00503

    View details for Web of Science ID 000869619100001

    View details for PubMedID 36173746

  • Chemoselective Labeling and Immobilization of Phosphopeptides with Phosphorimidazolide Reagents. Chembiochem : a European journal of chemical biology Brown, N. W., Schlomach, S. K., Marmelstein, A. M., Fiedler, D. 2022: e202200407


    Protein phosphorylation is one of the most ubiquitous post-translational modifications, regulating numerous essential processes in cells. Accordingly, the large-scale annotation of phosphorylation sites continues to provide central insight into the regulation of signaling networks. The global analysis of the phosphoproteome typically relies on mass spectrometry analysis of phosphopeptides, with an enrichment step necessary due to the sub-stoichiometric nature of phosphorylation. Several affinity-based methods and chemical modification strategies have been developed to date, but the choice of enrichment method can have a considerable impact on the results. Here, we show that a biotinylated, photo-cleavable phosphorimidazolide reagent permits the immobilization and subsequent cleavage of phosphopeptides. The method is capable of the capture and release of phosphopeptides of varying characteristics, and this mild and selective strategy expands the current repertoire for phosphopeptide chemical modification with the potential to enrich and identify new phosphorylation sites in the future.

    View details for DOI 10.1002/cbic.202200407

    View details for PubMedID 36166450

  • Affinity-based proteomics reveals novel targets of inositol pyrophosphate (5-IP7)-dependent phosphorylation and binding in Trypanosoma cruzi replicative stages MOLECULAR MICROBIOLOGY Mantilla, B. S., Kalesh, K., Brown, N. W., Fiedler, D., Docampo, R. 2021; 115 (5): 986-1004


    Diphosphoinositol-5-pentakisphosphate (5-PP-IP5 ), also known as inositol heptakisphosphate (5-IP7 ), has been described as a high-energy phosphate metabolite that participates in the regulation of multiple cellular processes through protein binding or serine pyrophosphorylation, a posttranslational modification involving a β-phosphoryl transfer. In this study, utilizing an immobilized 5-IP7 affinity reagent, we performed pull-down experiments coupled with mass spectrometry identification, and bioinformatic analysis, to reveal 5-IP7 -regulated processes in the two proliferative stages of the unicellular parasite Trypanosoma cruzi. Our protein screen clearly defined two cohorts of putative targets either in the presence of magnesium ions or in metal-free conditions. We endogenously tagged four protein candidates and immunopurified them to assess whether 5-IP7 -driven phosphorylation is conserved in T. cruzi. Among the most interesting targets, we identified a choline/o-acetyltransferase domain-containing phosphoprotein that undergoes 5-IP7 -mediated phosphorylation events at a polyserine tract (Ser578-580 ). We also identified a novel SPX domain-containing phosphoribosyltransferase [EC] herein termed as TcPRPPS4. Our data revealed new possible functional roles of 5-IP7 in this divergent eukaryote, and provided potential new targets for chemotherapy.

    View details for DOI 10.1111/mmi.14672

    View details for Web of Science ID 000609330400001

    View details for PubMedID 33354791

  • MLKL Requires the Inositol Phosphate Code to Execute Necroptosis. Molecular cell Dovey, C. M., Diep, J. n., Clarke, B. P., Hale, A. T., McNamara, D. E., Guo, H. n., Brown, N. W., Cao, J. Y., Grace, C. R., Gough, P. J., Bertin, J. n., Dixon, S. J., Fiedler, D. n., Mocarski, E. S., Kaiser, W. J., Moldoveanu, T. n., York, J. D., Carette, J. E. 2018; 70 (5): 936–48.e7


    Necroptosis is an important form of lytic cell death triggered by injury and infection, but whether mixed lineage kinase domain-like (MLKL) is sufficient to execute this pathway is unknown. In a genetic selection for human cell mutants defective for MLKL-dependent necroptosis, we identified mutations in IPMK and ITPK1, which encode inositol phosphate (IP) kinases that regulate the IP code of soluble molecules. We show that IP kinases are essential for necroptosis triggered by death receptor activation, herpesvirus infection, or a pro-necrotic MLKL mutant. In IP kinase mutant cells, MLKL failed to oligomerize and localize to membranes despite proper receptor-interacting protein kinase-3 (RIPK3)-dependent phosphorylation. We demonstrate that necroptosis requires IP-specific kinase activity and that a highly phosphorylated product, but not a lowly phosphorylated precursor, potently displaces the MLKL auto-inhibitory brace region. These observations reveal control of MLKL-mediated necroptosis by a metabolite and identify a key molecular mechanism underlying regulated cell death.

    View details for PubMedID 29883610