All Publications


  • Nanoengineering Triplet-Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS nano Schloemer, T., Narayanan, P., Zhou, Q., Belliveau, E., Seitz, M., Congreve, D. N. 2023

    Abstract

    Using light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature. With a wide range of sensitizer and annihilator motifs available for TTA-UC, many researchers seek to integrate these materials in solution or solid-state applications. In this Review, we discuss nanoengineering deployment strategies and highlight their uses in recent state-of-the-art examples of TTA-UC integrated in both solution and solid-state applications. Considering both implementation tactics and application-specific requirements, we identify critical needs to push TTA-UC-based applications from an academic curiosity to a scalable technology.

    View details for DOI 10.1021/acsnano.3c00543

    View details for PubMedID 36800310

  • Sequential Carrier Transfer Can Accelerate Triplet Energy Transfer from Functionalized CdSe Nanocrystals JOURNAL OF PHYSICAL CHEMISTRY LETTERS Wilson, M. B., Hasham, M., Narayanan, P., Villanueva, F., Green, P. B., Imperiale, C. J. 2023: 1899-1909

    Abstract

    Nanocrystal (NC)-sensitized triplet-fusion upconversion is a rising strategy to convert long-wavelength, incoherent light into higher-energy output photons. Here, we chart the photophysics of tailor-functionalized CdSe NCs to understand energy transfer to surface-anchored transmitter ligands, which can proceed via correlated exciton transfer or sequential carrier hops. Varying NC size, we observe a pronounced acceleration of energy transfer (from kquench = 0.0096 ns-1 ligand-1 to 0.064 ns-1 ligand-1) when the barrier to hole-first sequential transfer is lowered from 100 ± 25 meV to 50 ± 25 meV. This acceleration is 5.1× the expected effect of increased carrier wave function leakage, so we conclude that sequential transfer becomes kinetically dominant under the latter conditions. Last, transient photoluminescence shows that NC band-edge and trap states are comparably quenched by functionalization (up to ∼98% for sequential transfer) and exhibit matched dynamics for t > 300 ns, consistent with a dynamic quasi-equilibrium where photoexcitations can ultimately be extracted even when a carrier is initially trapped.

    View details for DOI 10.1021/acs.jpclett.2c03443

    View details for Web of Science ID 000933297400001

    View details for PubMedID 36780580

  • Triplet Fusion Upconversion Nanocapsule Synthesis. Journal of visualized experiments : JoVE Schloemer, T. H., Sanders, S. N., Zhou, Q., Narayanan, P., Hu, M., Gangishetty, M. K., Anderson, D., Seitz, M., Gallegos, A. O., Stokes, R. C., Congreve, D. N. 2022

    Abstract

    Triplet fusion upconversion (UC) allows for the generation of one high energy photon from two low energy input photons. This well-studied process has significant implications for producing high energy light beyond a material's surface. However, the deployment of UC materials has been stymied due to poor material solubility, high concentration requirements, and oxygen sensitivity, ultimately resulting in reduced light output. Toward this end, nanoencapsulation has been a popular motif to circumvent these challenges, but durability has remained elusive in organic solvents. Recently, a nanoencapsulation technique was engineered to tackle each of these challenges, whereupon an oleic acid nanodroplet containing upconversion materials was encapsulated with a silica shell. Ultimately, these nanocapsules (NCs) were durable enough to enable triplet fusion upconversion-facilitated volumetric three-dimensional (3D) printing. By encapsulating upconversion materials with silica and dispersing them in a 3D printing resin, photopatterning beyond the surface of the printing vat was made possible. Here, video protocols for the synthesis of upconversion NCs are presented for both small-scale and large-scale batches. The outlined protocols serve as a starting point for adapting this encapsulation scheme to multiple upconversion schemes for use in volumetric 3D printing applications.

    View details for DOI 10.3791/64374

    View details for PubMedID 36155426

  • Luminescence Enhancement Due to Symmetry Breaking in Doped Halide Perovskite Nanocrystals. Journal of the American Chemical Society Ahmed, G. H., Liu, Y., Bravic, I., Ng, X., Heckelmann, I., Narayanan, P., Fernandez, M. S., Monserrat, B., Congreve, D. N., Feldmann, S. 2022

    Abstract

    Metal-halide perovskite nanocrystals have demonstrated excellent optoelectronic properties for light-emitting applications. Isovalent doping with various metals (M2+) can be used to tailor and enhance their light emission. Although crucial to maximize performance, an understanding of the universal working mechanism for such doping is still missing. Here, we directly compare the optical properties of nanocrystals containing the most commonly employed dopants, fabricated under identical synthesis conditions. We show for the first time unambiguously, and supported by first-principles calculations and molecular orbital theory, that element-unspecific symmetry-breaking rather than element-specific electronic effects dominate these properties under device-relevant conditions. The impact of most dopants on the perovskite electronic structure is predominantly based on local lattice periodicity breaking and resulting charge carrier localization, leading to enhanced radiative recombination, while dopant-specific hybridization effects play a secondary role. Our results suggest specific guidelines for selecting a dopant to maximize the performance of perovskite emitters in the desired optoelectronic devices.

    View details for DOI 10.1021/jacs.2c07111

    View details for PubMedID 35977424