Professional Education


  • Doctor of Philosophy, California Institute of Technology (2018)

Stanford Advisors


All Publications


  • Husbandry of the African Turquoise Killifish Nothobranchius furzeri. Cold Spring Harbor protocols Nath, R. D., Bedbrook, C. N., Nagvekar, R., Brunet, A. 2023

    Abstract

    The African turquoise killifish (Nothobranchius furzeri) is an extremely short-lived vertebrate that has emerged as a powerful model organism for several research areas, including aging and embryonic diapause, which is the temporary suspension of embryonic development. The killifish research community is expanding and developing new solutions to improve the tractability of the killifish as a model system. Starting a killifish colony from scratch can present numerous challenges. In this protocol, we aim to highlight critical elements in building and maintaining a killifish colony. This protocol should help laboratories start a killifish colony and standardize aspects of killifish husbandry.

    View details for DOI 10.1101/pdb.prot107738

    View details for PubMedID 36863854

  • Life Span Assessment in the African Turquoise Killifish Nothobranchius furzeri. Cold Spring Harbor protocols Bedbrook, C. N., Nath, R. D., Barajas, R., Brunet, A. 2023

    Abstract

    The African turquoise killifish (Nothobranchius furzeri) is the shortest-lived vertebrate bred in captivity, with a median life span of 4-6 mo. Within its short life span, the killifish recapitulates critical aspects of human aging, including neurodegeneration and increased frailty. Developing standardized protocols for life span assessment in killifish is critical for identifying environmental and genetic factors that impact vertebrate life span. A standardized life span protocol should have low variability and high reproducibility, and it should enable comparison of life spans between laboratories. Here, we report our standardized protocol for measuring life span in the African turquoise killifish.

    View details for DOI 10.1101/pdb.prot107917

    View details for PubMedID 36863852

  • The Genetics of Aging: A Vertebrate Perspective CELL Singh, P., Demmitt, B. A., Nath, R. D., Brunet, A. 2019; 177 (1): 200–220
  • The Genetics of Aging: A Vertebrate Perspective. Cell Singh, P. P., Demmitt, B. A., Nath, R. D., Brunet, A. 2019; 177 (1): 200–220

    Abstract

    Aging negatively impacts vitality and health. Many genetic pathways that regulate aging were discovered in invertebrates. However, the genetics of aging is more complex in vertebrates because of their specialized systems. This Review discusses advances in the genetic regulation of aging in vertebrates from work in mice, humans, and organisms with exceptional lifespans. We highlight challenges for the future, including sex-dependent differences in lifespan and the interplay between genes and environment. We also discuss how the identification of reliable biomarkers of age and development of new vertebrate models can be leveraged for personalized interventions to counter aging and age-related diseases.

    View details for PubMedID 30901541