Rohith Soman
Research Engineer
Electrical Engineering
All Publications
-
Negative capacitance overcomes Schottky-gate limits in GaN high-electron-mobility transistors.
Science (New York, N.Y.)
2025: eadx6955
Abstract
For high-electron-mobility transistors based on two-dimensional electron gas (2DEG) within a quantum well, such as those based on AlGaN/GaN heterostructure, a Schottky-gate is used to maximize the amount of charge that can be induced and thereby the current that can be achieved. However, the Schottky-gate also leads to very high leakage current through the gate electrode. Adding a conventional dielectric layer between the nitride layers and gate metal can reduce leakage; but this comes at the price of a reduced drain current. Here, we used a ferroic HfO2- ZrO2 bilayer as the gate dielectric and achieved a simultaneous increase in the ON current and decrease in the leakage current, a combination otherwise not attainable with conventional dielectrics. This approach surpasses the conventional limits of Schottky GaN transistors and provides a new pathway to improve performance in transistors based on 2DEG.
View details for DOI 10.1126/science.adx6955
View details for PubMedID 40638712
-
Integration of top-side low-temperature diamond on AlGaN/GaN RF HEMT for device-level cooling
APPLIED PHYSICS LETTERS
2025; 126 (21)
View details for DOI 10.1063/5.0261673
View details for Web of Science ID 001497981100014
-
Integration of 150 nm gate length N-polar GaN MIS-HEMT devices with all-around diamond for device-level cooling
APPLIED PHYSICS EXPRESS
2025; 18 (4)
View details for DOI 10.35848/1882-0786/adcb87
View details for Web of Science ID 001475872300001
-
Lossless Phonon Transition Through GaN-Diamond and Si-Diamond Interfaces
ADVANCED ELECTRONIC MATERIALS
2024
View details for DOI 10.1002/aelm.202400146
View details for Web of Science ID 001265392700001
-
Cooling future system-on-chips with diamond inter-tiers
CELL REPORTS PHYSICAL SCIENCE
2023; 4 (12)
View details for DOI 10.1016/j.xcrp.2023.101686
View details for Web of Science ID 001144107300001
-
Development of 300-400 °C grown diamond for semiconductor devices thermal management
MRS ADVANCES
2023
View details for DOI 10.1557/s43580-023-00677-0
View details for Web of Science ID 001103119100001
-
Growth and mobility characterization of N-polar AlGaN channel high electron mobility transistors
APPLIED PHYSICS LETTERS
2023; 123 (6)
View details for DOI 10.1063/5.0140777
View details for Web of Science ID 001044510200007
-
Demonstration of N-Polar All-AlGaN High Electron Mobility Transistors With 375 mA/mm Drive Current
IEEE ELECTRON DEVICE LETTERS
2023; 44 (7): 1072-1075
View details for DOI 10.1109/LED.2023.3279400
View details for Web of Science ID 001021302800011
-
Scaling Study on High-Current Density Low-Dispersion GaN Vertical FinFETs
IEEE ELECTRON DEVICE LETTERS
2023; 44 (5): 841-844
View details for DOI 10.1109/LED.2023.3259002
View details for Web of Science ID 000980442400035
-
Impact of Diamond Passivation on f(T) and f(max) of mm-wave N-Polar GaN HEMTs
IEEE TRANSACTIONS ON ELECTRON DEVICES
2022
View details for DOI 10.1109/TED.2022.3218612
View details for Web of Science ID 000886832400001
-
Low Thermal Budget Growth of Near-Isotropic Diamond Grains for Heat Spreading in Semiconductor Devices
ADVANCED FUNCTIONAL MATERIALS
2022
View details for DOI 10.1002/adfm.202208997
View details for Web of Science ID 000854896500001
-
Nanoporous GaN on p-type GaN: A Mg out-diffusion compensation layer for heavily Mg-doped p-type GaN.
Nanotechnology
2022
Abstract
Embeddingp-type gallium nitride (p-GaN) with controlled Mg out-diffusion in adjacent epitaxial layers is a key for designing various multi-junction structures with high precision and enabling more reliable bandgap engineering of III-nitride-based optoelectronics and electronics. Here, we report, for the first time, with experimental evidence how nanoporous GaN (NP GaN) can be introduced as a compensation layer for the Mg out-diffusion fromp-GaN. NP GaN onp-GaN provides an ex-situ-formed interface with oxygen and carbon impurities, compensating Mg out-diffusion fromp-GaN. To corroborate our findings, we used two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN as the indicator to study the impact of the Mg out-diffusion from underlying layers. Electron concentration evaluated from the capacitance-voltage measurement shows that 9 * 1012cm-2of carriers accumulate in the AlGaN/GaN 2DEG structure grown on NP GaN, which is the almost same number of carriers as that grown with nop-GaN. In contrast, 2DEG onp-GaN without NP GaN presents 9 * 109cm-2of the electron concentration, implying 2DEG structure is depleted by Mg out-diffusion. The results address the efficacy of NP GaN and its' role in successfully embeddingp-GaN in multi-junction structures for various state-of-the-art III-nitride-based devices.
View details for DOI 10.1088/1361-6528/ac91d7
View details for PubMedID 36103775
-
Vertical Ga2O3 MOSFET With Magnesium Diffused Current Blocking Layer
IEEE ELECTRON DEVICE LETTERS
2022; 43 (9): 1527-1530
View details for DOI 10.1109/LED.2022.3196035
View details for Web of Science ID 000845067200038
-
A study on MOCVD growth window for high quality N-polar GaN for vertical device applications
SEMICONDUCTOR SCIENCE AND TECHNOLOGY
2022; 37 (9)
View details for DOI 10.1088/1361-6641/ac7e67
View details for Web of Science ID 000829564000001
-
A systematic study of the regrown interface impurities in unintentionally doped Ga-polar c-plane GaN and methods to reduce the same
SEMICONDUCTOR SCIENCE AND TECHNOLOGY
2022; 37 (7)
View details for DOI 10.1088/1361-6641/ac71bf
View details for Web of Science ID 000807760500001