Stanford Advisors


All Publications


  • Stepwise Generation of Human Induced Pluripotent Stem Cell-Derived Cardiac Pericytes to Model Coronary Microvascular Dysfunction. Circulation Shen, M., Liu, C., Zhao, S. R., Manhas, A., Sundaram, L., Ameen, M., Wu, J. C. 2023; 147 (6): 515-518

    View details for DOI 10.1161/CIRCULATIONAHA.122.061770

    View details for PubMedID 36745700

  • SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant. Science translational medicine Guo, H., Yu, X., Liu, Y., Paik, D. T., Justesen, J. M., Chandy, M., Jahng, J. W., Zhang, T., Wu, W., Rwere, F., Zhao, S. R., Pokhrel, S., Shivnaraine, R. V., Mukherjee, S., Simon, D. J., Manhas, A., Zhang, A., Chen, C. H., Rivas, M. A., Gross, E. R., Mochly-Rosen, D., Wu, J. C. 2023; 15 (680): eabp9952

    Abstract

    The common aldehyde dehydrogenase 2 (ALDH2) alcohol flushing variant known as ALDH2*2 affects ∼8% of the world's population. Even in heterozygous carriers, this missense variant leads to a severe loss of ALDH2 enzymatic activity and has been linked to an increased risk of coronary artery disease (CAD). Endothelial cell (EC) dysfunction plays a determining role in all stages of CAD pathogenesis, including early-onset CAD. However, the contribution of ALDH2*2 to EC dysfunction and its relation to CAD are not fully understood. In a large genome-wide association study (GWAS) from Biobank Japan, ALDH2*2 was found to be one of the strongest single-nucleotide polymorphisms associated with CAD. Clinical assessment of endothelial function showed that human participants carrying ALDH2*2 exhibited impaired vasodilation after light alcohol drinking. Using human induced pluripotent stem cell-derived ECs (iPSC-ECs) and CRISPR-Cas9-corrected ALDH2*2 iPSC-ECs, we modeled ALDH2*2-induced EC dysfunction in vitro, demonstrating an increase in oxidative stress and inflammatory markers and a decrease in nitric oxide (NO) production and tube formation capacity, which was further exacerbated by ethanol exposure. We subsequently found that sodium-glucose cotransporter 2 inhibitors (SGLT2i) such as empagliflozin mitigated ALDH2*2-associated EC dysfunction. Studies in ALDH2*2 knock-in mice further demonstrated that empagliflozin attenuated ALDH2*2-mediated vascular dysfunction in vivo. Mechanistically, empagliflozin inhibited Na+/H+-exchanger 1 (NHE-1) and activated AKT kinase and endothelial NO synthase (eNOS) pathways to ameliorate ALDH2*2-induced EC dysfunction. Together, our results suggest that ALDH2*2 induces EC dysfunction and that SGLT2i may potentially be used as a preventative measure against CAD for ALDH2*2 carriers.

    View details for DOI 10.1126/scitranslmed.abp9952

    View details for PubMedID 36696485