Bio


For over a decade I have advocated for dedicated research efforts on the basic physics of room temperature high gradient structures and new initiatives for the associated RF systems. This required demanding multidisciplinary collaboration to harness limited resources. The basic elements of the research needed to be inclusive to address not only the fundamentals of accelerator structures but also the fundamentals of associated technologies such as RF manipulation and novel microwave power sources. These basic research efforts were not bundled with specific developments for an application or a general program. The emerging technologies promise a broad, transformational impact.

With this underlying philosophy in mind, in 2006 the US High Gradient Research Collaboration for which I am the spokesman was formed. SLAC is the host of this collaboration, which comprises MIT, ANL, University of Maryland and University of Colorado, NRL and a host of SBIR companies. This led to the revitalization of this research area worldwide. The international collaborative effort grew to include KEK in Japan, INFN, Frascati in Italy, the Cockcroft Institute in the UK, and the CLIC team at CERN.

This effort led to a new understanding of the geometrical effects affecting high gradient operations. The collaborative work led to new advances in understanding the gradient limits of photonic band gap structures. Now we have a new optimization methodology for accelerator structure geometries and ongoing research on alternate and novel materials. These efforts doubled the usable gradient in normal conducting high gradient linacs to more than 100 MV/m, thus revitalizing the spread of the technology to other applications including compact Inverse Compton Scattering gamma-ray sources for national security applications, and compact proton linacs for cancer therapy.

Academic Appointments


Administrative Appointments


  • Chief Scientist, Accelerator Technology Research Division, SLAC National Accelerator laboratory (2014 - 2021)
  • Professor, Particle Physics and Astrophysics Department (2012 - Present)
  • Group Leader/Accelerator Technology Research Department Head, Stanford Linear Accelerator Center (2006 - 2012)
  • Associate Professor with Tenure, Physics and Astrophysics Department (2005 - 2012)
  • Associate Professor, Physics and Astrophysics Department (2002 - 2005)
  • High Power RF Group Leader., Stanford Linear Accelerator Center, Accelerator Research Department A (1999 - 2006)

Honors & Awards


  • Fellow, , American Physical Society (2005)
  • Prize for achievements in accelerator physics and technology, US Particle Accelerator School (2003)

2023-24 Courses


All Publications


  • Status and future plans for C<SUP>3</SUP> R&D JOURNAL OF INSTRUMENTATION Nanni, E. A., Breidenbach, M., Li, Z., Vernieri, C., Wang, F., White, G., Bai, M., Belomestnykh, S., Bhat, P., Barklow, T., Berg, W. J., Borzenets, V., Byrd, J., Dhar, A., Dhuley, R. C., Doss, C., Duris, J., Edelen, A., Emma, C., Frisch, J., Gabriel, A., Gessner, S., Hast, C., Jing, C., Klebaner, A., Kim, D., Krasnykh, A. K., Lewellen, J., Liepe, M., Litos, M., Lu, X., Maxson, J., Montanari, D., Musumeci, P., Nagaitsev, S., Nassiri, A., Ng, C., Othman, M. K., Oriunno, M., Palmer, D., Patterson, J., Peskin, M. E., Peterson, T. J., Power, J., Qiang, J., Rosenzweig, J., Shiltsev, V., Shumail, M., Simakov, E., Snively, E., Spataro, B., Tantawi, S., Graaf, H., Weatherford, B., Wu, J., Wootton, K. P. 2023; 18 (9)
  • Shielding Analysis of a Preclinical Bremsstrahlung X-ray FLASH Radiotherapy System within a Clinical Radiation Therapy Vault. Health physics Rosenstrom, A., Santana-Leitner, M., Rokni, S., Shumail, M., Tantawi, S., Kwofie, J., Dewji, S., Loo, B. W. 2023

    Abstract

    A preclinical radiotherapy system producing FLASH dose rates with 12 MV bremsstrahlung x rays is being developed at Stanford University and SLAC National Accelerator Laboratory. Because of the high expected workload of 6,800 Gy w-1 at the isocenter, an efficient shielding methodology is needed to protect operators and the public while the preclinical system is operated in a radiation therapy vault designed for 6 MV x rays. In this study, an analysis is performed to assess the shielding of the local treatment head and radiation vault using the Monte Carlo code FLUKA and the empirical methodology given in the National Council on Radiation Protection and Measurements Report 151. Two different treatment head shielding designs were created to compare single-layer and multilayer shielding methodologies using high-Z and low-Z materials. The multilayered shielding methodology produced designs with a 17% reduction in neutron fluence leaking from the treatment head compared to the single layered design of the same size, resulting in a decreased effective dose to operators and the public. The conservative assumptions used in the empirical methods can lead to over-shielding when treatment heads use polyethylene or multilayered shielding. High-Z/Low-Z multilayered shielding optimized via Monte Carlo is shown to be effective in the case of treatment head shielding and provide more effective shielding design for external beam radiotherapy systems that use 12 MV bremsstrahlung photons. Modifications to empirical methods used in the assessment of MV radiotherapy systems may be warranted to capture the effects of polyethylene in treatment head shielding.

    View details for DOI 10.1097/HP.0000000000001718

    View details for PubMedID 37459481

  • XCC: an X-ray FEL-based<i> ????</i> Compton collider Higgs factory JOURNAL OF INSTRUMENTATION Barklow, T., Emma, C., Huang, Z., Naji, A., Nanni, E., Schwartzman, A., Tantawi, S., White, G. 2023; 18 (7)
  • Frontiers in the Application of RF Vacuum Electronics. IEEE transactions on electron devices Armstrong, C. M., Snively, E. C., Shumail, M., Nantista, C., Li, Z., Tantawi, S., Loo, B. W., Temkin, R. J., Griffin, R. G., Feng, J., Dionisio, R., Mentgen, F., Ayllon, N., Henderson, M. A., Goodman, T. P. 2023; 70 (6): 2643-2655

    Abstract

    The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication-terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.

    View details for DOI 10.1109/ted.2023.3239841

    View details for PubMedID 37250956

    View details for PubMedCentralID PMC10216895

  • High efficiency, low cost, RF sources for accelerators and colliders JOURNAL OF INSTRUMENTATION Ives, R. L., Read, M., Bui, T., Marsden, D., Collins, G., Freund, H., Ho, R., Higgins, L., Walker, C., Conant, J., Chase, B., Reid, J., Kroc, T., Yakovlev, V., Thangaraj, J. T., Dhuley, R. C., Potter, J., Jensen, A., Weatherford, B., Nanni, E. A., Tantawi, S. 2023; 18 (5)
  • Transformative Technology for FLASH Radiation Therapy. Applied sciences (Basel, Switzerland) Schulte, R., Johnstone, C., Boucher, S., Esarey, E., Geddes, C. G., Kravchenko, M., Kutsaev, S., Loo, B. W., Méot, F., Mustapha, B., Nakamura, K., Nanni, E. A., Obst-Huebl, L., Sampayan, S. E., Schroeder, C. B., Sheng, K., Snijders, A. M., Snively, E., Tantawi, S. G., Van Tilborg, J. 2023; 13 (8)

    Abstract

    The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.

    View details for DOI 10.3390/app13085021

    View details for PubMedID 38240007

    View details for PubMedCentralID PMC10795821

  • Transformative Technology for FLASH Radiation Therapy APPLIED SCIENCES-BASEL Schulte, R., Johnstone, C., Boucher, S., Esarey, E., Geddes, C. R., Kravchenko, M., Kutsaev, S., Loo, B. W., Meot, F., Mustapha, B., Nakamura, K., Nanni, E. A., Obst-Huebl, L., Sampayan, S. E., Schroeder, C. B., Sheng, K., Snijders, A. M., Snively, E., Tantawi, S. G., Van Tilborg, J. 2023; 13 (8)
  • Frontiers in the Application of RF Vacuum Electronics IEEE TRANSACTIONS ON ELECTRON DEVICES Armstrong, C. M., Snively, E. C., Shumail, M., Nantista, C., Li, Z., Tantawi, S., Loo, B. W., Temkin, R. J., Griffin, R. G., Feng, J., Dionisio, R., Mentgen, F., Ayllon, N., Henderson, M. A., Goodman, T. P. 2023
  • Monte Carlo simulation of shielding designs for a cabinet form factor preclinical MV-energy photon FLASH radiotherapy system. Medical physics Rosenstrom, A., Leitner, M. S., Rokni, S. H., Shumail, M., Tantawi, S., Dewji, S., Jr, B. W. 2023

    Abstract

    A preclinical MV-energy photon FLASH radiotherapy system is being designed at Stanford and SLAC National Accelerator Laboratory. Because of the higher energy and dose rate compared to conventional kV-energy photon laboratory-scale irradiators, adequate shielding in a stand-alone cabinet form factor is more challenging to achieve. We present a Monte Carlo simulation of multilayered shielding for a compact self-shielding system without the need for a radiation therapy vault.A multilayered shielding approach using multiple alternating layers of high-Z and low-Z materials is applied to the self-shielded cabinet to effectively mitigate the secondary radiation produced and to allow the device to be housed in a Controlled Radiation Area outside of a radiation vault. The multilayered shielding approach takes advantage of the properties of high-Z and low-Z radiation shielding materials such as density, cross-section, atomic number of the shielding elements, and products of radiation interactions within each layer. The Monte Carlo radiation transport code, FLUKA, is used to simulate the total effective dose produced by the operation.The multilayered shielding designs proposed and simulated produced effective dose rates significantly lower than monolayer designs with the same total material thickness at the regulatory boundary; this is accomplished through the manipulation of the locations where secondary radiation is produced and reactions due to material properties such as neutron back reflection in hydrogen. Borated polyethylene at five weight percent significantly increased the shielding performance as compared to regular polyethylene, with the magnitude of the reduction depending upon the order of the shielding material.The multilayered shielding provides a path for shielding preclinical FLASH systems that deliver MV-energy bremsstrahlung photons. This approach promises to be more efficient with respect to the shielding material mass and space claim as compared to shielded vaults typically required for clinical radiation therapy with MV photons. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/mp.16290

    View details for PubMedID 36780153

  • A “Cool” route to the Higgs boson and beyond. The Cool Copper Collider JINST - Journal of Instrumentation Vernieri, C., Nanni, E., Dasu, S., Peskin, M., Ntounis, D., et al 2023; 18 (07)
  • High gradient off-axis coupled C-band Cu and CuAg accelerating structures APPLIED PHYSICS LETTERS Schneider, M., Dolgashev, V., Lewellen, J. W., Tantawi, S. G., Nanni, E. A., Zuboraj, M., Fleming, R., Gorelov, D., Middendorf, M., Simakov, E. I. 2022; 121 (25)

    View details for DOI 10.1063/5.0132706

    View details for Web of Science ID 000901638300005

  • Design, fabrication, and tuning of a THz-driven electron gun PHYSICAL REVIEW ACCELERATORS AND BEAMS Lewis, S. M., Merrick, J., Othman, M. K., Haase, A., Tantawi, S., Nanni, E. A. 2022; 25 (12)
  • Bayesian optimisation to design a novel X-ray shaping device. Medical physics Whelan, B., Trovati, S., Wang, J., Fahrig, R., Maxim, P. G., Hanuka, A., Shumail, M., Tantawi, S., Merrick, J., Perl, J., Keall, P., Jr, B. W. 2022

    Abstract

    PURPOSE: In radiation therapy, X-ray dose must be precisely sculpted to the tumor, whilst simultaneously avoiding surrounding organs at risk. This requires modulation of X-ray intensity in space and/or time. Typically, this is achieved using a Multi Leaf Collimator (MLC) - a complex mechatronic device comprising over one hundred individually powered tungsten 'leaves' that move in or out of the radiation field as required. Here, an all-electronic X-ray collimation concept with no moving parts is presented, termed "SPHINX": Scanning Pencil-beam High-speed Intensity-modulated X-ray source. SPHINX utilizes a spatially distributed bremsstrahlung target and collimator array in conjunction with magnetic scanning of a high energy electron beam to generate a plurality of small X-ray "beamlets".METHODS: A simulation framework was developed in Topas Monte Carlo incorporating a phase space electron source, transport through user defined magnetic fields, bremsstrahlung X-ray production, transport through a SPHINX collimator, and dose in water. This framework was completely parametric, meaning a simulation could be built and run for any supplied geometric parameters. This functionality was coupled with Bayesian optimization to find the best parameter set based on an objective function which included terms to maximize dose rate for a user defined beamlet width while constraining inter-channel cross talk and electron contamination. Designs for beamlet widths of 5, 7, and 10 mm2 were generated. Each optimization was run for 300 iterations and took approximately 40 hours on a 24 core computer. For the optimized seven-mm model, a simulation of all beamlets in water was carried out including a linear scanning magnet calibration simulation. Finally, a back-of-envelope dose rate formalism was developed and used to estimate dose rate under various conditions.RESULTS: The optimized five-mm, seven-mm, and ten-mm models had beamlet widths of 5.1 mm, 7.2 mm, and 10.1 mm2 and dose rates of 3574 Gy/C, 6351 Gy/C and 10015 Gy/C respectively. The reduction in dose rate for smaller beamlet widths is a result of both increased collimation and source occlusion. For the simulation of all beamlets in water, the scanning magnet calibration reduced the offset between the collimator channels and beam centroids from 2.9+-1.9 mm to 0.01 +- 0.03mm. A slight reduction in dose rate of approximately 2% per degree of scanning angle was observed. Based on a back-of-envelope dose rate formalism, SPHINX in conjunction with next-generation linear accelerators has the potential to achieve substantially higher dose rates than conventional MLC based delivery, with delivery of an intensity modulated 100*100 mm2 field achievable in 0.9 to 10.6 s depending on the beamlet widths used.CONCLUSIONS: Bayesian optimization was coupled with Monte Carlo modelling to generate SPHINX geometries for various beamlet widths. A complete Monte Carlo simulation for one of these designs was developed, including electron beam transport of all beamlets through scanning magnets, X-ray production and collimation, and dose in water. These results demonstrate that SPHINX is a promising candidate for sculpting radiation dose with no moving parts, and has the potential to vastly improve both the speed and robustness of radiotherapy delivery. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/mp.15887

    View details for PubMedID 35904020

  • High field hybrid photoinjector electron source for advanced light source applications PHYSICAL REVIEW ACCELERATORS AND BEAMS Faillace, L., Agustsson, R., Behtouei, M., Bosco, F., Bruhwiler, D., Camacho, O., Carillo, M., Fukasawa, A., Gadjev, Giribono, A., Giuliano, L., Kutsaev, S., Majernik, N., Migliorati, M., Mostacci, A., Murokh, A., Palumbo, L., Spataro, B., Tantawi, S., Vaccarezza, C., Williams, O., Rosenzweig, J. B. 2022; 25 (6)
  • Bayesian Optimization of a Novel Intensity Modulated X-Ray Source Whelan, B., Keall, P., Perl, J., Wang, J., Trovati, S., Tantawi, S., Fahrig, R., Maxim, P., Shumail, M., Loo, B. WILEY. 2022: E320
  • Variational Self-Consistent Theory for Beam-Loaded Cavities PHYSICAL REVIEW APPLIED Naji, A., Tantawi, S. 2021; 16 (4)
  • Experimental demonstration of particle acceleration with normal conducting accelerating structure at cryogenic temperature PHYSICAL REVIEW ACCELERATORS AND BEAMS Nasr, M., Nanni, E., Breidenbach, M., Weathersby, S., Oriunno, M., Tantawi, S. 2021; 24 (9)
  • High-gradient rf tests of welded X-band accelerating cavities PHYSICAL REVIEW ACCELERATORS AND BEAMS Dolgashev, V. A., Faillace, L., Spataro, B., Tantawi, S., Bonifazi, R. 2021; 24 (8)
  • A proton beam energy modulator for rapid proton therapy. The Review of scientific instruments Lu, X., Li, Z., Dolgashev, V., Bowden, G., Sy, A., Tantawi, S., Nanni, E. A. 2021; 92 (2): 024705

    Abstract

    We present the design for a rapid proton energy modulator with radiofrequency accelerator cavities, which can deliver the proton radiation dose to varied depth in human tissues much faster than traditional mechanical beam energy degraders. The proton energy modulator is designed as a multi-cell 1-m long accelerator working at 2.856GHz. Each individual accelerator cavity is powered by a 400 kW compact klystron to provide an accelerating/decelerating gradient of 30 MV/m. The high gradient is enabled by the individual power coupling regime, which provides a high shunt impedance. Beam dynamics simulations were performed, showing that the energy modulator can provide ±30 MeV of beam energy change for a 150 MeV, 7mm long (full length) proton bunch, and the total energy spread of 3 MeV is satisfactory to clinical needs. A prototype experiment of a single cell has been built and tested, and the low-power microwave measurement results agree very well with simulations. The energy modulator is optimized for the 150 MeV cyclotron proton beam, while this approach can work with different beam energies.

    View details for DOI 10.1063/5.0035331

    View details for PubMedID 33648062

  • Design and demonstration of a distributed-coupling linear accelerator structure PHYSICAL REVIEW ACCELERATORS AND BEAMS Tantawi, S., Nasr, M., Li, Z., Limborg, C., Borchard, P. 2020; 23 (9)
  • An ultra-compact x-ray free-electron laser NEW JOURNAL OF PHYSICS Rosenzweig, J. B., Majernik, N., Robles, R. R., Andonian, G., Camacho, O., Fukasawa, A., Kogar, A., Lawler, G., Miao, J., Musumeci, P., Naranjo, B., Sakai, Y., Candler, R., Pound, B., Pellegrini, C., Emma, C., Halavanau, A., Hastings, J., Li, Z., Nasr, M., Tantawi, S., Anisimov, P., Carlsten, B., Krawczyk, F., Simakov, E., Faillace, L., Ferrario, M., Spataro, B., Karkare, S., Maxson, J., Ma, Y., Wurtele, J., Murokh, A., Zholents, A., Cianchi, A., Cocco, D., van der Geer, S. B. 2020; 22 (9)
  • Experimental demonstration of externally driven millimeter-wave particle accelerator structure APPLIED PHYSICS LETTERS Othman, M. K., Picard, J., Schaub, S., Dolgashev, V. A., Lewis, S. M., Neilson, J., Haase, A., Jawla, S., Spataro, B., Temkin, R. J., Tantawi, S., Nanni, E. A. 2020; 117 (7)

    View details for DOI 10.1063/5.0011397

    View details for Web of Science ID 000563578800002

  • Axion dark matter detection by superconducting resonant frequency conversion JOURNAL OF HIGH ENERGY PHYSICS Berlin, A., D'Agnolo, R., Ellis, S. R., Nantista, C., Neilson, J., Schuster, P., Tantawi, S., Toro, N., Zhou, K. 2020
  • Novel High-Power Microwave Circulator Employing Circularly Polarized Waves IEEE TRANSACTIONS ON PLASMA SCIENCE Franzi, M. A., Tantawi, S., Dolgashev, V., Jongewaar, E., Eichner, J. 2020; 48 (6): 1984–92
  • Initial Steps Towards A Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons Breitkreutz, D., Shumail, M., Bush, K., Tantawi, S., Maxim, P., Loo, B. WILEY. 2020: E799
  • Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates. Radiation research Breitkreutz, D. Y., Shumail, M. n., Bush, K. K., Tantawi, S. G., Maxim, P. G., Loo, B. W. 2020

    Abstract

    In this work, we investigated the delivery of a clinically acceptable pediatric whole brain radiotherapy plan at FLASH dose rates using two lateral opposing 40-MeV electron beams produced by a practically realizable linear accelerator system. The EGSnrc Monte Carlo software modules, BEAMnrc and DOSXYZnrc, were used to generate whole brain radiotherapy plans for a pediatric patient using two lateral opposing 40-MeV electron beams. Electron beam phase space files were simulated using a model of a diverging beam with a diameter of 10 cm at 50 cm SAD (defined at brain midline). The electron beams were collimated using a 10-cm-thick block composed of 5 cm of aluminum oxide and 5 cm of tungsten. For comparison, a 6-MV photon plan was calculated with the Varian AAA algorithm. Electron beam parameters were based on a novel linear accelerator designed for the PHASER system and powered by a commercial 6-MW klystron. Calculations of the linear accelerator's performance indicated an average beam current of at least 6.25 μA, providing a dose rate of 115 Gy/s at isocenter, high enough for cognition-sparing FLASH effects. The electron plan was less homogenous with a homogeneity index of 0.133 compared to the photon plan's index of 0.087. Overall, the dosimetric characteristics of the 40-MeV electron plan were suitable for treatment. In conclusion, Monte Carlo simulations performed in this work indicate that two lateral opposing 40-MeV electron beams can be used for pediatric whole brain irradiation at FLASH dose rates of 115 Gy/s and serve as motivation for a practical clinical FLASH radiotherapy system, which can be implemented in the near future.

    View details for DOI 10.1667/RADE-20-00069.1

    View details for PubMedID 32991725

  • A THz-Driven Field Emission Electron Gun Lewis, S. M., Merrick, J., Othman, M. K., Haase, A., Tantawi, S., Nanni, E. A., IEEE IEEE. 2020
  • Modular High Power RF Sources for Compact Linear Accelerator Systems Weatherford, B., Kemp, M., Lu, X., Merrick, J., Nanni, E., Neilson, J., Sy, A., Tantawi, S., IEEE IEEE. 2020: 55-56
  • High Gradient and of Breakdown Measurements in a Millimeter-Wave Accelerating Cavity Othman, M. K., Picard, J., Schaub, S., Dolgashev, V. A., Lewis, S., Spataro, B., Temkin, R. J., Tantawi, S., Nanni, E. A., IEEE IEEE. 2020
  • Development of a millimeter-period rf undulator PHYSICAL REVIEW ACCELERATORS AND BEAMS Toufexis, F., Tantawi, S. G. 2019; 22 (12)
  • PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology Maxim, P. G., Tantawi, S. G., Loo, B. W. 2019

    Abstract

    Pluridirectional high-energy agile scanning electronic radiotherapy (PHASER) is next-generation medical linac technology for ultra-rapid highly conformal image-guided radiation, fast enough to "freeze" physiological motion, affording improved accuracy, precision, and potentially superior FLASH radiobiological therapeutic index. Designed for compactness, economy, and clinical efficiency, it is also intended to address barriers to global access to curative radiotherapy.

    View details for DOI 10.1016/j.radonc.2019.05.005

    View details for PubMedID 31178058

  • Next generation high brightness electron beams from ultrahigh field cryogenic rf photocathode sources PHYSICAL REVIEW ACCELERATORS AND BEAMS Rosenzweig, J. B., Cahill, A., Dolgashev, Emma, C., Fukasawa, A., Li, R., Limborg, C., Maxson, J., Musumeci, P., Nause, A., Pakter, R., Pompili, R., Roussel, R., Spataro, B., Tantawi, S. 2019; 22 (2)
  • Copper Reconsidered: Material Innovations to Transform Vacuum Electronics Gamzina, D., Kozina, M., Mehta, A., Nanni, E. A., Tantawi, S., Welander, P. B., Horn, T., Ledford, C., IEEE IEEE. 2019
  • A Classical Field Theory Formulation for the Numerical Solution of Time Harmonic Electromagnetic Fields IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES Gold, A., Tantawi, S. 2019; 4: 245-259
  • High-Gradient Test Results of W-Band Accelerator Structures Othman, M. K., Picard, J., Schaub, S., Dolgashev, V. A., Jawla, S., Spataro, B., Temkin, R. J., Tantawi, S., Nanni, E. A., IEEE IEEE. 2019
  • Ultra-high brightness electron beams from very-high field cryogenic radiofrequency photocathode sources Rosenzweig, J. B., Cahill, A., Carlsten, B., Castorina, G., Croia, M., Emma, C., Fukusawa, A., Spataro, B., Alesini, D., Dolgashev, V., Ferrario, M., Lawler, G., Li, R., Limborg, C., Maxson, J., Musumeci, P., Pompili, R., Tantawi, S., Williams, O. ELSEVIER SCIENCE BV. 2018: 224–28
  • Efficient dual space source interpolation method for the numerical solution of self-consistent static beam-wave interactions PHYSICAL REVIEW ACCELERATORS AND BEAMS Gold, A., Tantawi, S. 2018; 21 (11)
  • Advances in high gradient normal conducting accelerator structures NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Simakov, E. I., Dolgashev, V. A., Tantawi, S. G. 2018; 907: 221–30
  • SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors Kernasovskiy, S. A., Kuenstner, S. E., Karpel, E., Ahmed, Z., Van Winkle, D. D., Smith, S., Dusatko, J., Frisch, J. C., Chaudhuri, S., Cho, H. M., Dober, B. J., Henderson, S. W., Hilton, G. C., Hubmayr, J., Irwin, K. D., Kuo, C. L., Li, D., Mates, J. B., Nasr, M., Tantawi, S., Ullom, J., Vale, L., Young, B. SPRINGER/PLENUM PUBLISHERS. 2018: 570–77
  • High gradient experiments with X-band cryogenic copper accelerating cavities PHYSICAL REVIEW ACCELERATORS AND BEAMS Cahill, A. D., Rosenzweig, J. B., Dolgashev, V. A., Tantawi, S. G., Weathersby, S. 2018; 21 (10)
  • Measurements of electron beam deflection and rf breakdown rate from a surface wave guided in metallic mm-wave accelerating structures PHYSICAL REVIEW ACCELERATORS AND BEAMS Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., O'Shea, B., Spataro, B., Weathersby, S., Tantawi, S. G. 2018; 21 (9)
  • rf losses in a high gradient cryogenic copper cavity PHYSICAL REVIEW ACCELERATORS AND BEAMS Cahill, A. D., Rosenzweig, J. B., Dolgashev, V. A., Li, Z., Tantawi, S. G., Weathersby, S. 2018; 21 (6)
  • Results from mm-Wave Accelerating Structure High-Gradient Tests Nanni, E. A., Dolgashev, V., Jawla, S., Neilson, J., Othman, M., Picard, J., Schaub, S., Spataro, B., Tantawi, S., Temkin, R. J., IEEE IEEE. 2018
  • Development for a supercompact X-band pulse compression system and its application at SLAC PHYSICAL REVIEW ACCELERATORS AND BEAMS Wang, J. W., Tantawi, S. G., Xu, C., Franzi, M., Krejcik, P., Bowden, G., Condamoor, S., Ding, Y., Dolgashev, V., Eichner, J., Haase, A., Lewandowski, J. R., Xiao, L. 2017; 20 (11)
  • RF design for the TOPGUN photogun: A cryogenic normal conducting copper electron gun NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Cahill, A. D., Fukasawa, A., Pakter, R., Rosenzweig, J. B., Dolgashev, V. A., Limborg-Deprey, C., Tantawi, S., Spataro, B., Castorina, G. 2017; 865: 105–8
  • High gradient tests of metallic mm-wave accelerating structures NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., O'Shea, B., Spataro, B., Weathersby, S., Tantawi, S. G. 2017; 864: 12–28
  • Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube APPLIED PHYSICS LETTERS Toufexis, F., Tantawi, S. G., Jensen, A., Dolgashev, V. A., Haase, A., Fazio, M. V., Borchard, P. 2017; 110 (26)

    View details for DOI 10.1063/1.4990970

    View details for Web of Science ID 000404627700055

  • Fabrication and radio frequency test of large-area MgB2 films on niobium substrates SUPERCONDUCTOR SCIENCE & TECHNOLOGY Ni, Z., Guo, X., Welander, P. B., Yang, C., Franzi, M., Tantawi, S., Feng, Q., Liu, K. 2017; 30 (4)
  • Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical-chemical vapor deposition SUPERCONDUCTOR SCIENCE & TECHNOLOGY Withanage, W. K., Xi, X. X., Nassiri, A., Lee, N., Wolak, M. A., Tan, T., Welander, P. B., Franzi, M., Tantawi, S., Kustom, R. L. 2017; 30 (4)
  • High Gradient mm-Wave Metallic Accelerating Structures Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Nanni, E. A., Neilson, J., Novokhatski, A., O'Shea, B., Spataro, B., Weathersby, S., Tantawi, S. G., AIP, Gold, S. H., Nusinovich, G. S., Wootton, K. P. AMER INST PHYSICS. 2017

    View details for DOI 10.1063/1.4975878

    View details for Web of Science ID 000403065000042

  • Compact Linac-Driven Light Sources Utilizing mm-period RF Undulators Toufexis, F., Dolgashev, V. A., Limborg-Deprey, C., Tantawi, S. G., Khounsary, A. M., Pareschi, G. SPIE-INT SOC OPTICAL ENGINEERING. 2017

    View details for DOI 10.1117/12.2274296

    View details for Web of Science ID 000425013700001

  • First High Power Results from the 57.12 GHz 5th Harmonic Frequency Multiplier Toufexis, F., Tantawi, S. G., Jensen, A., Dolgashev, V. A., Haase, A., Fazio, M., Borchard, P., IEEE IEEE. 2017
  • Prototyping high-gradient mm-wave accelerating structures Nanni, E. A., Dolgashev, V. A., Haase, A., Neilson, J., Tantawi, S., Schaub, S. C., Temkin, R. J., Spataro, B., IOP IOP PUBLISHING LTD. 2017
  • rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures PHYSICAL REVIEW ACCELERATORS AND BEAMS Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., O'Shea, B., Spataro, B., Weathersby, S., Tantawi, S. G. 2016; 19 (11)
  • X-band accelerator structures: On going R&D at the INFN Gatti, G., Marcelli, A., Spataro, B., Dolgashev, V., Lewandowski, J., Tantawi, S. G., Yeremian, A. D., Higashi, Y., Rosenzweig, J., Sarti, S., Caliendo, C., Castorina, G., Cibin, G., Carfora, L., Leonardi, O., Rigato, V., Campostrini, M. ELSEVIER. 2016: 206–12
  • Theory of electromagnetic insertion devices and the corresponding synchrotron radiation PHYSICAL REVIEW ACCELERATORS AND BEAMS Shumail, M., Tantawi, S. G. 2016; 19 (7)
  • Compact rf polarizer and its application to pulse compression systems PHYSICAL REVIEW ACCELERATORS AND BEAMS Franzi, M., Wang, J., Dolgashev, V., Tantawi, S. 2016; 19 (6)
  • Conceptual design of X band waveguide dual circular polarizer PHYSICAL REVIEW ACCELERATORS AND BEAMS Xu, C., Tantawi, S., Wang, J. 2016; 19 (6)
  • Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures PHYSICAL REVIEW ACCELERATORS AND BEAMS Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., Spataro, B., Weathersby, S., Tantawi, S. G. 2016; 19 (5)
  • High power tests of an electroforming cavity operating at 11.424 GHz JOURNAL OF INSTRUMENTATION Dolgashev, V. A., Gatti, G., Higashi, Y., Leonardi, O., Lewandowski, J. R., Marcelli, A., Rosenzweig, J., Spataro, B., Tantawi, S. G., Yeremian, D. A. 2016; 11
  • Conceptual design of a sapphire loaded coupler for superconducting radio-frequency 1.3 GHz cavities PHYSICAL REVIEW ACCELERATORS AND BEAMS Xu, C., Tantawi, S. 2016; 19 (2)
  • rf breakdown tests of mm-wave metallic accelerating structures Physical Review Accelerators and Beams Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., Spataro, B., Weathersby, S., Tantawi, S. G. 2016; 19 (1)
  • Progress on Design of Radial Klystrons Dal Forno, M., Tantawi, S. G., Ruth, R. D., Jensen, A., IEEE IEEE. 2016
  • A New Compact High-Power Microwave Phase Shifter IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES Chang, C., Guo, L., Tantawi, S. G., Liu, Y., Li, J., Chen, C., Huang, W. 2015; 63 (6): 1875-1882
  • Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom MEDICAL PHYSICS Bazalova-Carter, M., Liu, M., Palma, B., Dunning, M., McCormick, D., Hemsing, E., Nelson, J., Jobe, K., Colby, E., Koong, A. C., Tantawi, S., Dolgashev, V., Maxim, P. G., Loo, B. W. 2015; 42 (4): 1606-1613

    Abstract

    To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results.Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0-6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated.MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4-6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0-4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%.The authors demonstrate that relative dose distributions for VHEE beams of 50-70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

    View details for DOI 10.1118/1.4914371

    View details for Web of Science ID 000352273200015

    View details for PubMedID 25832051

  • Characterization of thick conducting molybdenum films: Enhanced conductivity via thermal annealing SURFACE & COATINGS TECHNOLOGY Marcelli, A., Spataro, B., Sarti, S., Dolgashev, V. A., Tantawi, S., Yeremian, D. A., Higashi, Y., Parodi, R., Notargiacomo, A., Xu, J., Cappuccio, G., Gatti, G., Cibin, G. 2015; 261: 391–97
  • Design and analysis of a radial X-band klystron Dal Forno, M., Tantawi, S. G., Ruth, R. D., Jensen, A., IEEE IEEE. 2015
  • X-Band Multi-Beam Klystron Design and Progress Report Jensen, A., Neilson, J., Tantawi, S., IEEE IEEE. 2015
  • Dielectric laser accelerators REVIEWS OF MODERN PHYSICS England, R. J., Noble, R. J., Bane, K., Dowell, D. H., Ng, C., Spencer, J. E., Tantawi, S., Wu, Z., Byer, R. L., Peralta, E., Soong, K., Chang, C., Montazeri, B., Wolf, S. J., Cowan, B., Dawson, J., Gai, W., Hommelhoff, P., Huang, Y., Jing, C., McGuinness, C., Palmer, R. B., Naranjo, B., Rosenzweig, J., Travish, G., Mizrahi, A., Schachter, L., Sears, C., Werner, G. R., Yoder, R. B. 2014; 86 (4): 1337-1389
  • Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Graves, W. S., Bessuille, J., Brown, P., Carbajo, S., Dolgashev, V., Hong, K., Ihloff, E., Khaykovich, B., Lin, H., Murari, K., Nanni, E. A., Resta, G., Tantawi, S., Zapata, L. E., Kaertner, F. X., Moncton, D. E. 2014; 17 (12)
  • Coupling power into accelerating mode of a three-dimensional silicon woodpile photonic band-gap waveguide PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Wu, Z., England, R., Ng, C., Cowan, B., McGuinness, C., Lee, C., Qi, M., Tantawi, S. 2014; 17 (8)
  • Experimental Demonstration of a Tunable Microwave Undulator PHYSICAL REVIEW LETTERS Tantawi, S., Shumail, M., Neilson, J., Bowden, G., Chang, C., Hemsing, E., Dunning, M. 2014; 112 (16)

    Abstract

    Static magnetic undulators used by x-ray light sources are fundamentally too limited to achieve shorter undulator periods and dynamic control. To overcome these limitations, we report experimental demonstration of a novel short-period microwave undulator, essentially a Thomson scattering device, that has yielded tunable spontaneous emission and seeded coherent radiation. Its equivalent undulator period (λu) is 13.9 mm while it has achieved an equivalent magnetic field of 0.65 T. For future-generation light sources, this device promises a shorter undulator period, a large aperture, and fast dynamic control.

    View details for DOI 10.1103/PhysRevLett.112.164802

    View details for Web of Science ID 000335325900006

    View details for PubMedID 24815654

  • High Power S-band Window Optimized to Minimize Electric and Magnetic Field on the Surface Yeremian, A. D., Dolgashev, V. A., Tantawi, S. G., IEEE IEEE. 2014: 459–60
  • Results of High Power Tests of Dual Mode Accelerating Structure Dolgashev, V. A., Tantawi, S. G., Yeremian, A. D., Weathersby, S. P., Lewandowski, J. R., IEEE IEEE. 2014: 401
  • High-gain X-ray free electron laser by beat-wave terahertz undulator PHYSICS OF PLASMAS Chang, C., Hei, D., Pellegrin, C., Tantawi, S. 2013; 20 (12)

    View details for DOI 10.1063/1.4846858

    View details for Web of Science ID 000329176800058

  • Molybdenum sputtering film characterization for high gradient accelerating structures CHINESE PHYSICS C Bini, S., Spataro, B., Marcelli, A., Sarti, S., Dolgashev, V. A., Tantawi, S., Yeremian, A. D., Higashi, Y., Grimaldi, M. G., Romano, L., Ruffino, F., Parodi, R., Cibin, G., Marrelli, C., Migliorati, M., Caliendo, C. 2013; 37 (9)
  • High power breakdown testing of a photonic band-gap accelerator structure with elliptical rods PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Munroe, B. J., Cook, A. M., Shapiro, M. A., Temkin, R. J., Dolgashev, V. A., Laurent, L. L., Lewandowski, J. R., Yeremian, A., Tantawi, S. G., Marsh, R. A. 2013; 16 (1)
  • NOVEL COMPACT WAVEGUIDE DUAL CIRCULAR POLARIZER PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER Chang, C., Tantawi, S., Church, S., Neilson, J., Larkoski, P. V. 2013; 136: 1-16
  • Structural and morphological characterization of Mo coatings for high gradient accelerating structures Xu, Y., Spataro, B., Sarti, S., Dolgashev, V. A., Tantawi, S., Yeremian, A. D., Higashi, Y., Grimaldi, M. G., Romano, L., Ruffino, F., Parodi, R., Caliendo, C., Notargiacomo, A., Cibin, G., Marcelli, A., Wu, Z. Y. IOP PUBLISHING LTD. 2013
  • Electron dynamics and transverse-kick elimination in a high-field short-period helical microwave undulator APPLIED PHYSICS LETTERS Chang, C., Shumail, M., Tantawi, S., Neilson, J., Pellegrini, C. 2012; 101 (16)

    View details for DOI 10.1063/1.4759002

    View details for Web of Science ID 000310669300002

  • Development of X-band accelerating structures for high gradients CHINESE PHYSICS C Bini, S., Chimenti, V., Marcelli, A., Palumbo, L., Spataro, B., Dolgashev, V. A., Tantawi, S., Yeremian, A. D., Higashi, Y., Grimaldi, M. G., Romano, L., Ruffino, F., Parodi, R. 2012; 36 (7): 639–47
  • Technology developments for a large-format heterodyne MMIC array at W-band INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES Sieth, M., Church, S., Lau, J. M., Voll, P., Gaier, T., Kangaslahti, P., Samoska, L., Soria, M., Cleary, K., Gawande, R., Readhead, A. C., Reeves, R., Harris, A., Neilson, J., Tantawi, S., Van Winkle, D. 2012; 4 (3): 299-307
  • Monte Carlo Simulations and Experimental Validation of Rapid Dose Delivery with Very High-Energy Electron Beams Bazalova, M., Maxim, P., Tantawi, S., Colby, E., Koong, A., Loo, B. W. AMER ASSOC PHYSICISTS MEDICINE AMER INST PHYSICS. 2012: 3944

    View details for DOI 10.1118/1.4736098

    View details for Web of Science ID 000308905805557

  • A G-band cryogenic MMIC heterodyne receiver module for astronomical applications INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES Voll, P., Samoska, L., Church, S., Lau, J. M., Sieth, M., Gaier, T., Kangaslahti, P., Soria, M., Tantawi, S., Van Winkle, D. 2012; 4 (3): 283-289
  • A coaxial 2D-periodic perforated directional coupler RADIOPHYSICS AND QUANTUM ELECTRONICS Danilov, Y., Petelin, M. I., Tantawi, S. 2012; 54 (11): 731–36
  • Disk-Loaded RF Waveguide Matching Techniques Applied to Silicon Woodpile Accelerator Wu, Z., England, J., Ng, C., Tantawi, S., Zgadzaj, R., Gaul, E., Downer, M. C. AMER INST PHYSICS. 2012: 535–40

    View details for DOI 10.1063/1.4773754

    View details for Web of Science ID 000315058700078

  • STUDIES ON THIN FILM MgB2 FOR APPLICATIONS TO RF STRUCTURES FOR PARTICLE ACCELERATORS Tajima, T., Haberkorn, N. F., Civale, L., Schulze, R. K., Inoue, H., Guo, J., Dolgashev, V. A., Martin, D. W., Tantawi, S. G., Yoneda, C. G., Moeckly, B. H., Yung, C., Proslier, T., Pellin, M., Matsumoto, A., Watanabe, E., Balachandran, U. AMER INST PHYSICS. 2012: 297–304

    View details for DOI 10.1063/1.4712109

    View details for Web of Science ID 000306860500033

  • The GALAXIE All-Optical FEL Project Rosenzweig, J. B., Arab, E., Andonian, G., Cahill, A., Fitzmorris, K., Fukusawa, A., Hoang, P., Jovanovic, I., Marcus, G., Marinelli, A., Murokh, A., Musumeci, P., Naranjo, B., O'Shea, B., O'Shea, F., Ovodenko, A., Pogorelsky, I., Putterman, S., Roberts, K., Shumail, M., Tantawi, S., Valloni, A., Yakimenko, V., Xu, G., Zgadzaj, R., Gaul, E., Downer, M. C. AMER INST PHYSICS. 2012: 493–98

    View details for DOI 10.1063/1.4773746

    View details for Web of Science ID 000315058700070

  • Beam Dynamics Studies of a Helical X-Band RF Undulator Shumail, M., Bowden, G., Chang, C., Neilson, J., Tantawi, S., Zgadzaj, R., Gaul, E., Downer, M. C. AMER INST PHYSICS. 2012: 752–56

    View details for DOI 10.1063/1.4773792

    View details for Web of Science ID 000315058700116

  • THEORY AND EXPERIMENT OF A COMPACT WAVEGUIDE DUAL CIRCULAR POLARIZER PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER Chang, C., Church, S., Tantawi, S., Voll, P., Sieth, M., Devaraj, K. 2012; 131: 211-225
  • X-band active-passive rf pulse compressor with plasma switches PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Vikharev, A. L., Ivanov, O. A., Gorbachev, A. M., Lobaev, M. A., Isaev, V. A., Tantawi, S. G., Lewandowski, J. R., Hirshfield, J. L. 2011; 14 (12)
  • Progress on scanning field emission microscope development for surface observation Higashi, Y., Higo, T., Matsumoto, S., Yokoyama, K., Zhang Xiaowei, Dolgashev, V., Tantawi, S., Spataro, B. ELSEVIER SCIENCE BV. 2011: 156–59
  • Demonstration of the high RF power production feasibility in the CLIC power extraction and transfer structure [PETS] Cappelletti, A., Dolgashev, V., Lewandoski, J., Tantawi, S., Weathersby, S., Zelinski, J. ELSEVIER SCIENCE BV. 2011: 78–81
  • High-power comparison among brazed, clamped and electroformed X-band cavities Spataro, B., Alesini, D., Chimenti, V., Dolgashev, V., Higashi, Y., Migliorati, M., Mostacci, A., Parodi, R., Tantawi, S. G., Yeremian, A. D. ELSEVIER SCIENCE BV. 2011: 88–93
  • Technological issues and high gradient test results on X-band molybdenum accelerating structures Spataro, B., Alesini, D., Chimenti, V., Dolgashev, V., Haase, A., Tantawi, S. G., Higashi, Y., Marrelli, C., Mostacci, A., Parodi, R., Yeremian, A. D. ELSEVIER SCIENCE BV. 2011: 114–21
  • VELOCIRAPTOR: An X-band photoinjector and linear accelerator for the production of Mono-Energetic gamma-rays NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Anderson, S. G., ALBERT, F., Bayramian, A. J., Beer, G., Bonanno, R. E., Cross, R. R., Deis, G., Ebbers, C. A., Gibson, D. J., Hartemann, F. V., Houck, T. L., Marsh, R. A., McNabb, D. P., Messerly, M. J., SCARPETTI, R. D., Shverdin, M. Y., Siders, C. W., WU, S. S., Barty, C. P., ADOLPHSEN, C. E., Chu, T. S., Jongewaard, E. N., Li, Z., Limborg, C., Tantawi, S. G., Vlieks, A. E., Wang, F., Wang, J. W., Zhou, F., Raubenheimer, T. O. 2011; 657 (1): 140-149
  • Design of RF feed system and cavities for standing-wave accelerator structure Neilson, J., Tantawi, S., Dolgashev, V. ELSEVIER. 2011: 52–54
  • The effects of magnetic field on single-surface resonant multipactor JOURNAL OF APPLIED PHYSICS Chang, C., Verboncoeur, J., Tantawi, S., Jing, C. 2011; 110 (6)

    View details for DOI 10.1063/1.3642958

    View details for Web of Science ID 000295619300020

  • Experimental study of rf pulsed heating PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Laurent, L., Tantawi, S., Dolgashev, V., Nantista, C., Higashi, Y., Aicheler, M., Heikkinen, S., Wuensch, W. 2011; 14 (4)
  • X-band photonic band-gap accelerator structure breakdown experiment PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Marsh, R. A., Shapiro, M. A., Temkin, R. J., Dolgashev, V. A., Laurent, L. L., Lewandowski, J. R., Yeremian, A., Tantawi, S. G. 2011; 14 (2)
  • Technology developments for a scalable heterodyne MMIC array at W-band Sieth, M., Church, S., Lau, J. M., Voll, P., Gaier, T., Kangaslahti, P., Samoska, L., Soria, M., Cleary, K., Gawande, R., Readhead, A. S., Reeves, R., Harris, A., Neilson, J., Tantawi, S., Van Winkle, D., IEEE IEEE. 2011: 527–30
  • A G-Band Cryogenic MMIC Heterodyne Receiver Module for Astronomical Applications Voll, P., Samoska, L., Church, S., Lau, J. M., Sieth, M., Gaier, T., Kangaslahti, P., Soria, M., Tantawi, S., Van Winkle, D., IEEE IEEE. 2011: 523–26
  • Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures APPLIED PHYSICS LETTERS Dolgashev, V., Tantawi, S., Higashi, Y., Spataro, B. 2010; 97 (17)

    View details for DOI 10.1063/1.3505339

    View details for Web of Science ID 000284233600008

  • Progress Toward Externally Powered X-Band Dielectric-Loaded Accelerating Structures IEEE TRANSACTIONS ON PLASMA SCIENCE Jing, C., Gai, W., Power, J. G., Konecny, R., Liu, W., Gold, S. H., Kinkead, A. K., Tantawi, S. G., Dolgashev, V., Kanareykin, A. 2010; 38 (6): 1354–60
  • Development of MMIC receivers for cosmic microwave background interferometry Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V Sieth, M., Lau, J. M., Voll, P., Church, S., Kangaslahti, P., Samoska, L., Soria, M., Gaier, T., Van Winkle, D., Neilson, J., Tantawi, S., Cleary, K., Readhead, A. C. SPIE-INT SOC OPTICAL ENGINEERING. 2010

    View details for DOI 10.1117/12.857830

    View details for Web of Science ID 000285838800071

  • RF Critical Field Measurement of MgB2 Thin Films Coated on Nb Tajima, T., Eremeev, G., Zou, G., Dolgashev, V., Martin, D., Nantista, C., Tantawi, S., Yoneda, C., Moeckly, B. H., Campisi, I., IOP IOP PUBLISHING LTD. 2010
  • Research and Development for Ultra-High Gradient Accelerator Structures Tantawi, S. G., Dolgashev, V., Higashi, Y., Spataro, B., Gold, S. H., Nusinovich, G. S. AMER INST PHYSICS. 2010: 29-+
  • Design of RF Feed System for Standing-Wave Accelerator Structures Neilson, J., Tantawi, S., Dolgashev, V., Gold, S. H., Nusinovich, G. S. AMER INST PHYSICS. 2010: 463–66
  • Cryogenic RF Material Testing with a High-Q Copper Cavity 14th Workshop on Advanced Accelerator Concepts Guo, J., Tantawi, S., Martin, D., Yoneda, C. AMER INST PHYSICS. 2010: 330–335
  • Development of a 150 GHz MMIC module prototype for large-scale CMB radiation experiments Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V Voll, P., Lau, J. M., Sieth, M., Church, S. E., Samoska, L. A., Kangaslahti, P. P., Soria, M., Gaier, T. C., Van Winkle, D., Tantawi, S. SPIE-INT SOC OPTICAL ENGINEERING. 2010

    View details for DOI 10.1117/12.857872

    View details for Web of Science ID 000285838800072

  • An Analytical Design and Analysis Method for a High-Power Circular to Rectangular Waveguide Mode Converter and Its Applications IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES Yeddulla, M., Tantawi, S., Guo, J., Dolgashev, V. 2009; 57 (6): 1516–25
  • MgB2 for application to RF cavities for accelerators Applied Superconductivity Conference Tajima, T., Canabal, A., Zhao, Y., Romanenko, A., Moeckly, B. H., Nantista, C. D., Tantawi, S., Phillips, L., Iwashita, Y., Campisi, I. E. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. 2007: 1330–33
  • Analysis of a compact circular TE(0,1) - rectangular TE(0,2) waveguide mode converter Yeddulla, M., Tantawi, S., IEEE IEEE. 2007: 1157–59
  • Superconducting materials testing with a high-Q copper FR cavity Tantawi, S. G., Dolgashev, V., Bowden, G., Lewandowski, J., Nantista, C. D., Canabal, A., Tajima, T., Campisi, I. E., IEEE IEEE. 2007: 4126-+
  • High power tests of normal conducting single-cell structures Dolgashev, V. A., Tantawi, S. G., Nantista, C. D., Higashi, Y., Higo, T., IEEE IEEE. 2007: 4186-+
  • Development of a dielectric-loaded test accelerator Gold, S. H., Kinkead, A. K., Gai, W., Power, J. G., Konecny, R., Long, J., Jing, C., Tantawi, S. G., Nantista, C. D., IEEE IEEE. 2007: 2455-+
  • Active RF pulse compression using electrically controlled semiconductor switches Guoo, J., Tantawi, S., IEEE IEEE. 2007: 4189–91
  • Active RF pulse compression using an electrically controlled semiconductor switch NEW JOURNAL OF PHYSICS Guo, J., Tantawi, S. 2006; 8
  • rf distribution system for a set of standing-wave accelerator structures PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Tantawi, S. G. 2006; 9 (11)
  • Development of ultra-fast silicon switches for active X-band high power RF compression systems 7th Workshop on High Energy Density and High Power RF Guo, J. Q., Tantawi, S. AMER INST PHYSICS. 2006: 454–462
  • Experiments on active RF pulse compressors using plasma switches Vikharev, A. L., Ivanov, O. A., Gorbachev, A. M., Isaev, V. A., Kuzikov, S. V., Koldanov, V. A., Lobaev, M. A., Gold, S. H., Kinkead, A. K., Nezhevenko, O. A., Hirshfield, J. L., Tantawi, S., Nantista, C., Abe, D. K., Nusinovich, G. S. AMER INST PHYSICS. 2006: 463-+
  • Design of a compact, multi-megawatt circular TE01 mode converter Dolgashev, V. A., Tantawi, S. G., Nantista, C. D., Abe, D. K., Nusinovich, G. S. AMER INST PHYSICS. 2006: 431-+
  • Selective coupling using patterns of perforations between modes of oversized structures Petelin, M., Tantawi, S., Danilov, Y., Abe, D. K., Nusinovich, G. S. AMER INST PHYSICS. 2006: 416-+
  • High-power multimode X-band rf pulse compression system for future linear colliders PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Tantawi, S. G., Nantista, C. D., Dolgashev, V. A., Pearson, C., Nelson, J., Jobe, K., Chan, J., Fant, K., Frisch, J., Atkinson, D. 2005; 8 (4)
  • Test bed for superconducting materials Nantista, C., Tantawi, S., Weisend, J., Siemann, R., Dolgashev, Campisi, IEEE IEEE. 2005: 4370–72
  • High gradient performance of NLC/GLC X-band accelerating structures Dobert, S., Adolphsen, C., Bowden, G., Burke, D., Chan, J., Dolgashev, Frisch, J., Jobe, K., Jones, R., Lewandowski, J., Kirby, R., Li, Z., McCormick, D., Miller, R., Nantista, C., Nelson, J., Pearson, C., Ross, M., Schultz, D., Smith, T., Tantawi, S., Wang, J., Arkan, Boffo, C., Carter, H., Gonin, Khabiboulline, T., Mishra, S., Romanov, G., Solyak, N., Funahashi, Y., Hayano, H., Higashi, N., Higashi, Y., Higo, T., Kawamata, H., Kume, T., Morozumi, Y., Takata, K., Takatomi, T., Toge, N., Ueno, K., Watanabe, Y., IEEE IEEE. 2005: 1299–1301
  • Distributed Bragg coupler for optical all-dielectric electron accelerator Zhang, Z., Tantawi, S., Ruth, R., IEEE IEEE. 2005: 2721–23
  • Low-field accelerator structure couplers and design techniques PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Nantista, C., Tantawi, S., Dolgashev 2004; 7 (7)
  • Multimoded reflective delay lines and their application to resonant delay line rf pulse compression systems PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Tantawi, S. G. 2004; 7 (3)
  • A novel circular TE01-mode bend for ultra-high-power applications JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS Tantawi, S. G. 2004; 18 (12): 1679–87
  • Status of x-band standing wave structure studies at SLAC 20th Biennial Particle Accelerator Conference Dolgashev, V. A., Adolphsen, C., Burke, D. L., Bowden, G., Jones, R. M., Lewandowski, J., Li, Z., Loewen, R., Miller, R. H., Ng, C., Pearson, C., Ruth, R. D., Tantawi, S. G., Wang, J. W., Wilson, P. IEEE. 2003: 1264–1266
  • Effect of RF parameters on breakdown limits in high-vacuum X-band structures Dolgashev, V. A., Tantawi, S. G., Gold, S. H., Nusinovich, G. S. AMER INST PHYSICS. 2003: 151–65
  • Recent advances in RF pulse compressor systems at SLAC Tantawi, S. G., Nantista, C. D., Gold, S. H., Nusinovich, G. S. AMER INST PHYSICS. 2003: 172–86
  • High power tests of a multimode X-band RF distribution system Tantawi, S., Nantista, C., Chew, J., Lucas, P., Webber, S. IEEE. 2003: 482–86
  • Transverse impedance bench measurements in NLC/JLC accelerating structures Baboi, N., Bowden, G. B., Jones, R. M., Tantawi, S. G., Lewandowski, Chew, J., Lucas, P., Webber, S. IEEE. 2003: 1261–63
  • Novel accelerator structure couplers Nantista, C. D., Dolgashev, V. A., Tantawi, S. G., Chew, J., Lucas, P., Webber, S. IEEE. 2003: 1276–78
  • Circuit and scattering matrix analysis of the wire measurement method of beam impedance in accelerating structures Jones, R. M., Baboi, N., Tantawi, S. G., Kroll, N. M., Chew, J., Lucas, P., Webber, S. IEEE. 2003: 1270–72
  • Measurements of the suitability of large rock salt formations for radio detection of high-energy neutrinos NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Gorham, P., Saltzberg, D., Odian, A., Williams, D., Besson, D., Frichter, G., Tantawi, S. 2002; 490 (3): 476–91
  • Development of high power X-band semiconductor microwave switch for pulse compression systems of future linear colliders PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Tamura, F., Tantawi, S. G. 2002; 5 (6)
  • Design and cold testing of a compact TE01 omicron to TE20 square mode converter IEEE TRANSACTIONS ON PLASMA SCIENCE Spassovsky, Gouveia, E. S., Tantawi, S. G., Hogan, B. P., Lawson, W., Granatstein, V. L. 2002; 30 (3): 787–93
  • Multimoded rf delay line distribution system for the Next Linear Collider PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS Tantawi, S. G., Nantista, C., Kroll, N., Li, Z., Miller, R., Ruth, R., Wilson, P., Neilson, J. 2002; 5 (3)
  • Active and passive RF components for high-power systems Tantawi, S. G., Nantista, C. D., Carlsten, B. E. AMER INST PHYSICS. 2002: 83–100
  • RF breakdown in high vacuum multimegawatt x-band structures Dolgashev, V. A., Tantawi, S. G., Carlsten, B. E. AMER INST PHYSICS. 2002: 77–82
  • The development of a diamond switch for RF pulse compression systems IEEE TRANSACTIONS ON PLASMA SCIENCE Xu, X. X., Schein, J., Qi, N. S., Prasad, R. R., Krishnan, M., Fumihiko, T., Tantawi, S. G. 2001; 29 (1): 85-92
  • Multi-moded passive RF pulse compression development at SLAC Nantista, C. D., Tantawi, S. G., Colestock, P. L., Kelley, S. AMER INST PHYSICS. 2001: 702–11
  • Switched matrix accelerator REVIEW OF SCIENTIFIC INSTRUMENTS Whittum, D. H., Tantawi, S. G. 2001; 72 (1): 73–91

    View details for DOI 10.1063/1.1331323

    View details for Web of Science ID 000166136100010

  • A compact, planar, eight-port waveguide power divider/combiner: The cross potent superhybrid IEEE MICROWAVE AND GUIDED WAVE LETTERS Nantista, C. D., Tantawi, S. G. 2000; 10 (12): 520–22

    View details for DOI 10.1109/75.895089

    View details for Web of Science ID 000166510300004

  • Multi-megawatt X-band semiconductor microwave switches Tamura, F., Tantawi, S. G., Perkins, T. IEEE. 2000: 1731–34
  • The generation of 400-MW RF pulses at X-band using resonant delay lines Tantawi, S. G., Loewen, R. J., Nantista, C. D., Vlieks, A. E. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. 1999: 2539–46

    View details for DOI 10.1109/22.809004

    View details for Web of Science ID 000084204800049

  • A multi-moded RF Delay Line Distribution System for the next linear collider Tantawi, S. G., Bowden, G., Farkas, Z. D., Irwin, J., Ko, K., Kroll, N., Lavine, T., Li, Z., Loewen, R., Miller, R., Nantista, C., Ruth, R. D., Rifkin, J., Vlieks, A. E., Wilson, P. B., Adolphsen, C., Wang, J., Lawson, W., Bellamy, C., Brosius, D. F. AMER INST PHYSICS. 1999: 967–74
  • The generation of 400 MW RF pulses at X-band using resonant delay lines Tantawi, S. G., Vlieks, A. E., Loewen, R. J., Matloubian, M., Ponti, E. IEEE. 1999: 345–48
  • The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches Tantawi, S. G., Lawson, W., Bellamy, C., Brosius, D. F. AMER INST PHYSICS. 1999: 959–66
  • The design and analysis of multi-megawatt distributed single pole double throw (SPDT) microwave switches Tantawi, S. G., Phillips, R. M. AMER INST PHYSICS. 1999: 296–303

    View details for DOI 10.1063/1.59020

    View details for Web of Science ID 000080797900032

  • The next linear collider test accelerator's rf pulse compression and transmission systems 17th Particle Accelerator Conference Tantawi, S. G., Adolphsen, C., Holmes, S., LAVINE, T., Loewen, R. J., Nantista, C., Pearson, C., Pope, R., Rifkin, J., Ruth, R. D., Vlieks, A. E. IEEE. 1998: 3192–3194
  • RF systems for the NLCTA 17th Particle Accelerator Conference Wang, J. W., Adolphsen, C., Atkinson, R., BAUMGARTNER, W., Eichner, J., Fuller, R. W., Gold, S. L., Hanna, S. M., Holmes, S. G., KOONTZ, R. F., LAVINE, T. L., Loewen, R. J., Miller, R. H., Nantista, C. D., Pope, R., Rifkin, J., Ruth, R. D., Tantawi, S. G., Vlieks, A. E., Wilson, P. B., Wilson, Z., Yeremian, A. IEEE. 1998: 3042–3044
  • Results from the SLAC NLC Test Accelerator 17th Particle Accelerator Conference Ruth, R. D., Adolphsen, C., Allison, S., Atkinson, R., BAUMGARTNER, W., Bong, P., Brown, V., Browne, M., Caryotakis, G., CASSEL, R., Cisneros, G., Clark, S. L., Constant, T., Corvin, C., Dean, T., Eichner, J., Fowkes, R., Fuller, R., Gold, S., GRIPPE, J., Hanna, S., Hoag, H., Holik, P., Holmes, S., Humphrey, R., Johnson, L., Jones, R., JONGEWAARD, E., Ko, K., Koontz, R., Kroll, N., LAVINE, T., LOEW, G. A., Loewen, R., Miller, R. H., Minister, J., Nesterov, V., Nantista, C., Paterson, J. M., Pearson, C., Phillips, R., Pietryka, M., Pope, R., Porter, T., Rifkin, J., Roster, W., Seidel, M., Smith, H., Smith, S., Spencer, J., Spencer, N., Sprehn, D., Tantawi, S., Tenenbaum, P., Tillghman, A., VLIEKS, A., Vylet, V., Wang, J. W., Wilson, P. B., Wilson, Z., Wright, E., Yeremian, D., Zelinski, J., Ziomek, C. IEEE. 1998: 439–443
  • An all-metal high power circularly polarized X-band RF load 17th Particle Accelerator Conference Fowkes, W. R., Jongewaard, E. N., Loewen, R. J., Tantawi, S. G., Vlieks, A. E. IEEE. 1998: 3189–3191
  • Upgrade of the SLAC SLED-II pulse compression system based on recent high power tests 17th Particle Accelerator Conference Vlieks, A. E., Fowkes, W. R., Loewen, R. J., Tantawi, S. G. IEEE. 1998: 3195–3197
  • Active high-power RF pulse compression using optically switched resonant delay lines IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES Tantawi, S. G., Ruth, R. D., Vlieks, A. E., Zolotorev, M. 1997; 45 (8): 1486–92

    View details for DOI 10.1109/22.618460

    View details for Web of Science ID A1997XT11900033

  • Active high power rf pulse compression using optically switched resonant delay lines Tantawi, S. G., Ruth, R. D., Vlieks, A. E., Zolotorev, M., Chattopadhyay, S., McCullough, J., Dahl, P. AIP PRESS. 1997: 813–21
  • The next linear collider test accelerator's rf pulse compression and transmission systems Tantawi, S. G., Vlieks, A. E., Fant, K., Lavine, T., Loewen, R. J., Pearson, C., Pope, R., Rifkin, J., Ruth, R. D., Chattopadhyay, S., McCullough, J., Dahl, P. AIP PRESS. 1997: 805–12
  • Active radio frequency pulse compression using switched resonant delay lines NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Tantawi, S. G., Ruth, R. D., Vlieks, A. E. 1996; 370 (2-3): 297-302
  • Status and results from the Next Linear Collider Test Accelerator XVIII International Linear Accelerator Conference Ruth, R. D., Adolphsen, C., Allison, S., Akemoto, M., Atkinson, R., BAUMGARTNER, W., Bong, P., Brown, V., Browne, M., Caryotakis, G., CASSEL, R., Cisneros, G., Clark, S. L., Constant, T., Corvin, C., Dean, T., Eichner, J., Fuller, R., Gold, S., GRIPPE, J., Hanna, S., Hoag, H., Holik, P., Holmes, S., Humphrey, R., Jones, R., Ko, K., Koontz, R., Kroll, N., LAVINE, T., LOEW, G. A., Loewen, R., Miller, R. H., Nesterov, V., Nantista, C., Paterson, J. M., Pearson, C., Phillips, R., Pierce, W., Pope, R., Porter, T., Rifkin, J., Roster, W., Seidel, M., Smith, H., Smith, S., Spencer, J., Spencer, N., Sprehn, D., Tantawi, S., Thompson, K., Tillghman, A., VLIEKS, A., Vylet, V., Wang, J. W., Wilson, P. B., Wilson, Z., Wright, E., Yeremian, D., Zelinski, J., Zomek, C. C E R N. 1996: 641–43
  • Reduced field TE(01) X-band traveling wave window 16th Biennial Particle Accelerator Conference Fowkes, W. R., Callin, R. S., Tantawi, S. G., WRIGHT, E. L. IEEE. 1996: 1587–1589
  • X-band high power dry load for NLCTA Ko, K., Hoag, H., Lee, T., Tantawi, S., IEEE I E E E. 1996: 1726–28
  • High gradient experiments on NLCTA accelerator structures XVIII International Linear Accelerator Conference Wang, J. W., Eichner, J. P., Fant, K. H., HOAG, H. A., KOONTZ, R. F., LAVINE, T., LOEW, G. A., Loewen, R. J., MENEGAT, A., Miller, R. H., Nantista, C. D., Pearson, C., Ruth, R. D., Tantawi, S. G., Vlieks, A. E., Wilson, P. B., Yoneda, C. C E R N. 1996: 656–58
  • Design of a 50-MW-klystron at X-band WRIGHT, E., CALLIN, R., CARYOTAKIS, G., EPPLEY, K., FANT, K., FOWKES, R., GOLD, S., KOONTZ, R., MILLER, R., PEARSON, C., PHILLIPS, R., TANTAWI, S., VLIEKS, A., Fernow, R. C. AIP PRESS. 1995: 58–66
  • NUMERICAL DESIGN AND ANALYSIS OF A COMPACT TE(10) TO TE(01) MODE TRANSDUCER TANTAWI, S., KO, K., KROLL, N., Ryne, R. AIP PRESS. 1994: 99–106
  • ACCELERATOR AND RF SYSTEM-DEVELOPMENT FOR NLC 1993 Particle Accelerator Conference Vlieks, A. E., CALLIN, R., DERUYTER, H., Early, R., FANT, K. S., FARKAS, Z. D., Fowkes, W. R., Galloway, C., HOAG, H. A., Koontz, R., LOEW, G. A., LAVINE, T. L., MENEGAT, A., Miller, R. H., Palmer, D., PEARSON, C. C., Ruth, R. D., Tantawi, S. G., Wilson, P. B., Wang, J. W., Yoneda, C. I E E E. 1993: 620–622
  • APPLICATIONS AND COMPARISONS OF METHODS OF COMPUTING THE S-MATRIX OF 2-PORTS JONES, R. M., KROLL, N. M., KO, K., TANTAWI, S., YU, D. U., Corneliussen, S. T., Carlton, L. I E E E. 1993: 936–38
  • MODE-SELECTIVE DIRECTIONAL COUPLER FOR NLC TANTAWI, S. G., Corneliussen, S. T., Carlton, L. I E E E. 1993: 1130–32
  • FLOWER-PETAL MODE CONVERTER FOR NLC HOAG, H. A., TANTAWI, S. G., CALLIN, R., DERUYTER, H., FARKAS, Z. D., KO, K., KROLL, N., LAVINE, T. L., MENEGAT, A., VLIEKS, A. E., Corneliussen, S. T., Carlton, L. I E E E. 1993: 1121–23
  • HIGH-POWER RF PULSE-COMPRESSION WITH SLED-II AT SLAC 1993 Particle Accelerator Conference Nantista, C., FARKAS, Z. D., Kroll, M., LAVINE, T. L., MENEGET, A. I E E E. 1993: 1196–1198
  • THE NEXT LINEAR COLLIDER TEST ACCELERATOR 1993 Particle Accelerator Conference Ruth, R. D., Adolphsen, C., Bane, K., Boyce, R. F., Burke, D. L., CALLIN, R., Caryotakis, G., CASSEL, R., Clark, S. L., DERUYTER, H., Fant, K., Fuller, R., Heifets, S., Hoag, H., Humphrey, R., Heifets, S., Koontz, R., KROLL, K. N., LAVINE, T., LOEW, G. A., MENEGAT, A., Miller, R. H., Nantista, C., Paterson, J. M., Pearson, C., Phillips, R., Rifkin, J., Spencer, J., Tantawi, S., Thompson, K. A., VLIEKS, A., Vylet, V., Wang, J. W., Wilson, P. B., Yeremian, A., Youngman, B. I E E E. 1993: 543–545
  • DEVELOPMENT OF MULTIMEGAWATT KLYSTRONS FOR LINEAR COLLIDERS CARYOTAKIS, G., CALLIN, R., EPPLEY, K., LEE, T., FANT, K., FOWKES, R., HOAG, H., PEARSON, C., PHILLIPS, R., TANTAWI, S., VLIEKS, A., WRIGHT, E., Corneliussen, S. T., Carlton, L. I E E E. 1993: 1106–8
  • INTERPRETATION OF MULTIFREQUENCY COMPLEX RESISTIVITY DATA FOR A LAYERED EARTH MODEL IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING MAHMOUD, S. F., TANTAWI, S. G., WAIT 1988; 26 (4): 399–408

    View details for DOI 10.1109/36.3043

    View details for Web of Science ID A1988N813500003