All Publications


  • Effect of the shot-to-shot variation on charge migration induced by sub-fs x-ray free-electron laser pulses PHYSICAL REVIEW RESEARCH Grell, G., Guo, Z., Driver, T., Decleva, P., Plesiat, E., Picon, A., Gonzalez-Vazquez, J., Walter, P., Marangos, J. P., Cryan, J. P., Marinelli, A., Palacios, A., Martin, F. 2023; 5 (2)
  • Photon energy-resolved velocity map imaging from spectral domain ghost imaging NEW JOURNAL OF PHYSICS Wang, J., Driver, T., Allum, F., Papadopoulou, C. C., Passow, C., Brenner, G., Li, S., Duesterer, S., Tul Noor, A., Kumar, S., Bucksbaum, P. H., Erk, B., Forbes, R., Cryan, J. P. 2023; 25 (3)
  • Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis. Physical chemistry chemical physics : PCCP McManus, J. W., Walmsley, T., Nagaya, K., Harries, J. R., Kumagai, Y., Iwayama, H., Ashfold, M. N., Britton, M., Bucksbaum, P. H., Downes-Ward, B., Driver, T., Heathcote, D., Hockett, P., Howard, A. J., Kukk, E., Lee, J. W., Liu, Y., Milesevic, D., Minns, R. S., Niozu, A., Niskanen, J., Orr-Ewing, A. J., Owada, S., Rolles, D., Robertson, P. A., Rudenko, A., Ueda, K., Unwin, J., Vallance, C., Burt, M., Brouard, M., Forbes, R., Allum, F. 2022

    Abstract

    We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

    View details for DOI 10.1039/d2cp03029b

    View details for PubMedID 36106844

  • The time-resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source. Journal of synchrotron radiation Walter, P., Osipov, T., Lin, M. F., Cryan, J., Driver, T., Kamalov, A., Marinelli, A., Robinson, J., Seaberg, M. H., Wolf, T. J., Aldrich, J., Brown, N., Champenois, E. G., Cheng, X., Cocco, D., Conder, A., Curiel, I., Egger, A., Glownia, J. M., Heimann, P., Holmes, M., Johnson, T., Lee, L., Li, X., Moeller, S., Morton, D. S., Ng, M. L., Ninh, K., O'Neal, J. T., Obaid, R., Pai, A., Schlotter, W., Shepard, J., Shivaram, N., Stefan, P., Van, X., Wang, A. L., Wang, H., Yin, J., Yunus, S., Fritz, D., James, J., Castagna, J. C. 2022; 29 (Pt 4): 957-968

    Abstract

    The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.

    View details for DOI 10.1107/S1600577522004283

    View details for PubMedID 35787561

  • Characterization of single-shot attosecond pulses with angular streaking photoelectron spectra PHYSICAL REVIEW A Zhao, X., Li, S., Driver, T., Van-Hung Hoang, Anh-Thu Le, Cryan, J. P., Marinelli, A., Lin, C. D. 2022; 105 (1)
  • Attosecond coherent electron motion in Auger-Meitner decay. Science (New York, N.Y.) Li, S., Driver, T., Rosenberger, P., Champenois, E. G., Duris, J., Al-Haddad, A., Averbukh, V., Barnard, J. C., Berrah, N., Bostedt, C., Bucksbaum, P. H., Coffee, R. N., DiMauro, L. F., Fang, L., Garratt, D., Gatton, A., Guo, Z., Hartmann, G., Haxton, D., Helml, W., Huang, Z., LaForge, A. C., Kamalov, A., Knurr, J., Lin, M., Lutman, A. A., MacArthur, J. P., Marangos, J. P., Nantel, M., Natan, A., Obaid, R., O'Neal, J. T., Shivaram, N. H., Schori, A., Walter, P., Wang, A. L., Wolf, T. J., Zhang, Z., Kling, M. F., Marinelli, A., Cryan, J. P. 1800: eabj2096

    Abstract

    [Figure: see text].

    View details for DOI 10.1126/science.abj2096

    View details for PubMedID 34990213

  • The development of attosecond XFELs for understanding ultrafast electron motion ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL. 71 Cryan, J. P., Driver, T., Duris, J., Guo, Z., Li, S., O'Neal, J. T., Marinelli, A., DiMauro, L. F., Perrin, H., Yelin, S. F. 2022; 71: 1-64
  • Multi-resolution electron spectrometer array for future free-electron laser experiments. Journal of synchrotron radiation Walter, P., Kamalov, A., Gatton, A., Driver, T., Bhogadi, D., Castagna, J. C., Cheng, X., Shi, H., Obaid, R., Cryan, J., Helml, W., Ilchen, M., Coffee, R. N. 2021; 28 (Pt 5): 1364-1376

    Abstract

    The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger-Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0-2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time-energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.

    View details for DOI 10.1107/S1600577521007700

    View details for PubMedID 34475285

  • Chimera Spectrum Diagnostics for Peptides Using Two-Dimensional Partial Covariance Mass Spectrometry MOLECULES Driver, T., Bachhawat, N., Frasinski, L. J., Marangos, J. P., Averbukh, V., Edelson-Averbukh, M. 2021; 26 (12)

    Abstract

    The rate of successful identification of peptide sequences by tandem mass spectrometry (MS/MS) is adversely affected by the common occurrence of co-isolation and co-fragmentation of two or more isobaric or isomeric parent ions. This results in so-called `chimera spectra', which feature peaks of the fragment ions from more than a single precursor ion. The totality of the fragment ion peaks in chimera spectra cannot be assigned to a single peptide sequence, which contradicts a fundamental assumption of the standard automated MS/MS spectra analysis tools, such as protein database search engines. This calls for a diagnostic method able to identify chimera spectra to single out the cases where this assumption is not valid. Here, we demonstrate that, within the recently developed two-dimensional partial covariance mass spectrometry (2D-PC-MS), it is possible to reliably identify chimera spectra directly from the two-dimensional fragment ion spectrum, irrespective of whether the co-isolated peptide ions are isobaric up to a finite mass accuracy or isomeric. We introduce '3-57 chimera tag' technique for chimera spectrum diagnostics based on 2D-PC-MS and perform numerical simulations to examine its efficiency. We experimentally demonstrate the detection of a mixture of two isomeric parent ions, even under conditions when one isomeric peptide is at one five-hundredth of the molar concentration of the second isomer.

    View details for DOI 10.3390/molecules26123728

    View details for Web of Science ID 000666733800001

    View details for PubMedID 34207274

    View details for PubMedCentralID PMC8234510

  • Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. Faraday discussions Allum, F., Anders, N., Brouard, M., Bucksbaum, P., Burt, M., Downes-Ward, B., Grundmann, S., Harries, J., Ishimura, Y., Iwayama, H., Kaiser, L., Kukk, E., Lee, J., Liu, X., Minns, R. S., Nagaya, K., Niozu, A., Niskanen, J., O'Neal, J., Owada, S., Pickering, J., Rolles, D., Rudenko, A., Saito, S., Ueda, K., Vallance, C., Werby, N., Woodhouse, J., You, D., Ziaee, F., Driver, T., Forbes, R. 2021

    Abstract

    The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.

    View details for DOI 10.1039/d0fd00115e

    View details for PubMedID 33629700

  • Time-resolved pump-probe spectroscopy with spectral domain ghost imaging. Faraday discussions Li, S., Driver, T., Alexander, O., Cooper, B., Garratt, D., Marinelli, A., Cryan, J. P., Marangos, J. P. 2021

    Abstract

    An atomic-level picture of molecular and bulk processes, such as chemical bonding and charge transfer, necessitates an understanding of the dynamical evolution of these systems. On the ultrafast timescales associated with nuclear and electronic motion, the temporal behaviour of a system is often interrogated in a 'pump-probe' scheme. Here, an initial 'pump' pulse triggers dynamics through photoexcitation, and after a carefully controlled delay a 'probe' pulse initiates projection of the instantaneous state of the evolving system onto an informative measurable quantity, such as electron binding energy. In this paper, we apply spectral ghost imaging to a pump-probe time-resolved experiment at an X-ray free-electron laser (XFEL) facility, where the observable is spectral absorption in the X-ray regime. By exploiting the correlation present in the shot-to-shot fluctuations in the incoming X-ray pulses and measured electron kinetic energies, we show that spectral ghost imaging can be applied to time-resolved pump-probe measurements. In the experiment presented, interpretation of the measurement is simplified because spectral ghost imaging separates the overlapping contributions to the photoelectron spectrum from the pump and probe pulse.

    View details for DOI 10.1039/d0fd00122h

    View details for PubMedID 33625412

  • Inner Valence Hole Migration in Isopropanol Alexander, O., Barillot, T., Cooper, B., Driver, T., Garratt, D., Li, S., Marinelli, A., Cryan, J. P., Marangos, J. P., LR25 Collaboration, IEEE IEEE. 2021
  • Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser NATURE PHOTONICS Duris, J., Li, S., Driver, T., Champenois, E. G., MacArthur, J. P., Lutman, A. A., Zhang, Z., Rosenberger, P., Aldrich, J. W., Coffee, R., Coslovich, G., Decker, F., Glownia, J. M., Hartmann, G., Helml, W., Kamalov, A., Knurr, J., Krzywinski, J., Lin, M., Nantel, M., Natan, A., O'Neal, J., Shivaram, N., Walter, P., Wang, A., Welch, J. J., Wolf, T. A., Xu, J. Z., Kling, M. F., Bucksbaum, P. H., Zholents, A., Huang, Z., Cryan, J. P., Marinelli, A., Marangos, J. P. 2020; 14 (1): 30-+
  • Attosecond transient absorption spooktroscopy: a ghost imaging approach to ultrafast absorption spectroscopy. Physical chemistry chemical physics : PCCP Driver, T., Li, S., Champenois, E. G., Duris, J., Ratner, D., Lane, T. J., Rosenberger, P., Al-Haddad, A., Averbukh, V., Barnard, T., Berrah, N., Bostedt, C., Bucksbaum, P. H., Coffee, R., DiMauro, L. F., Fang, L., Garratt, D., Gatton, A., Guo, Z., Hartmann, G., Haxton, D., Helml, W., Huang, Z., LaForge, A., Kamalov, A., Kling, M. F., Knurr, J., Lin, M., Lutman, A. A., MacArthur, J. P., Marangos, J. P., Nantel, M., Natan, A., Obaid, R., O'Neal, J. T., Shivaram, N. H., Schori, A., Walter, P., Li Wang, A., Wolf, T. J., Marinelli, A., Cryan, J. P. 2019

    Abstract

    The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

    View details for DOI 10.1039/c9cp03951a

    View details for PubMedID 31793561

  • Negative Ion Mode Collision-Induced Dissociation for Analysis of Protein Arginine Methylation JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY Katsanovskaja, K., Driver, T., Pipkorn, R., Edelson-Averbukh, M. 2019; 30 (7): 1229–41

    Abstract

    Arginine methylation is a common protein post-translational modification (PTM) that plays a key role in eukaryotic cells. Three distinct types of this modification are found in mammals: asymmetric Nη1Nη1-dimethylarginine (aDMA), symmetric Nη1Nη2-dimethylarginine (sDMA), and an intermediate Nη1-monomethylarginine (MMA). Elucidation of regulatory mechanisms of arginine methylation in living organisms requires precise information on both the type of the modified residues and their location inside the protein amino acid sequences. Despite mass spectrometry (MS) being the method of choice for analysis of multiple protein PTMs, unambiguous characterization of protein arginine methylation may not be always straightforward. Indeed, frequent internal basic residues of Arg methylated tryptic peptides hamper their sequencing under positive ion mode collision-induced dissociation (CID), the standardly used tandem mass spectrometry method, while the relative stability of the aDMA and sDMA side chains under alternative non-ergodic electron-based fragmentation techniques, electron-capture and electron transfer dissociations (ECD and ETD), may impede differentiation between the isobaric residues. Here, for the first time, we demonstrate the potential of the negative ion mode collision-induced dissociation MS for analysis of protein arginine methylation and present data revealing that the negative polarity approach can deliver both an unambiguous identification of the arginine methylation type and extensive information on the modified peptide sequences.

    View details for DOI 10.1007/s13361-019-02176-9

    View details for Web of Science ID 000472938000012

    View details for PubMedID 30915654

    View details for PubMedCentralID PMC6591203

  • Partial covariance two-dimensional mass spectrometry for determination of biomolecular primary structure arXiv:1904.05946 Driver, T., Ayers, R., Pipkorn, R., Cooper, B., Bachhawat, N., Patchkovskii, S., Averbukh, V., Klug, D. R., Marangos, J. P., Frasinski, L. J., Edelson-Averbukh, M. 2019
  • Generation and Characterization of Attosecond Pulses from an X-ray Free-electron Laser Li, S., Rosenberger, P., Champenois, E. G., Driver, T., Bucksbaum, P. H., Coffee, R., Gatton, A., Hartmann, G., Helml, W., Huang, Z., Knurr, J., Kling, M. F., Lin, M., MacArthur, J. P., Maxwell, T. J., Nantel, M., Natan, A., Oneal, J. T., Shivaram, N. H., Walter, P., Wolf, T. A., Cryan, J. P., Marinelli, A., IEEE IEEE. 2019
  • Angle-resolved coherent wave mixing using a 4 fs ultra-broad bandwidth laser OPTICS LETTERS Mercer, I. P., Witting, T., Driver, T., Cogdell, R. J., Marangos, J. P., Tisch, J. G. 2017; 42 (4): 859–62

    Abstract

    We demonstrate angle-resolved coherent (ARC) wave mixing using 4 fs light pulses derived from a laser source that spans 550-1000 nm. We believe this to be the shortest pulse duration used to date in coherent multi-dimensional spectroscopy. The marriage of this ultra-broad band, few-cycle coherent source with the ARC technique will permit new investigations of the interplay between energy transfers and quantum superposition states spanning 8200  cm-1. We applied this configuration to measurements on the photosynthetic low light (LL) complex from Rhodopseudomonas palustris in solution at ambient temperature. We observe bi-exponential population dynamics for energy transfer across 5500  cm-1 (0.65 eV), which we attribute to energy transfer from the Qx transition of bacteriochlorophylls to the B850 pigment of the complex. We believe for the first time, to the best of our knowledge, we demonstrate that ARC maps can be recorded using a single laser pulse.

    View details for DOI 10.1364/OL.42.000859

    View details for Web of Science ID 000394039500052

    View details for PubMedID 28198883