Bio


Professor Devereaux received his Ph.D. in Physics from the University of Oregon in 1991, M.S. from University of Oregon in 1988, and B.S from New York University in 1986.

Professor Devereaux is currently the Director of the Stanford Institute for Materials and Energy Sciences (SIMES), a professor in the Photon Science Faculty at SLAC National Accelerator Laboratory and Stanford University and a Senior Fellow of the Precourt Institute for Energy. SIMES is a joint institute between Stanford main campus and SLAC, a national laboratory, focusing on scientific foundations related to the energy challenge facing our society.

Professor Devereaux was a Post-doctoral Fellow at the Max Planck Institut, Stuttgart, (1991-1993), a Post-doctoral Fellow at the University of California, Davis, CA, (1993-1996), an Assistant Professor at The George Washington University, Washington, DC, (1996-1999), and an Associate Professor (1999-2006) and Professor (2006-2007) at the University of Waterloo, Waterloo, ON, Canada

His main research interests lie in the areas of theoretical condensed matter physics and computational physics. His research effort focuses on using the tools of computational physics to understand quantum materials. The goal of his research is to understand equilibrium and ultrafast non-equilibrium electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. His group carries out numerical simulations on SIMES' high-performance compute cluster, the National Energy Research Scientific Computing Center (NERSC), and other US computational facilities. The specific focus of the group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.

Academic Appointments


  • Professor, Photon Science Directorate

Honors & Awards


  • Fellowship, U. S. Department of Education (1989-1991)
  • Junior Scholar Incentive Award, George Washington University (1998)
  • Research Fellowship, Alexander von Humboldt Foundation (2002-2006)
  • Premier's Research Excellence Award, Province of Ontario (2003)
  • Scientist Research Fellowship, Embassy of France (2005 & 2006)
  • Fellow, American Physical Society (2008)

Professional Education


  • Ph.D., University of Oregon, Physics (1991)
  • M.S., University of Oregon, Physics (1988)
  • B.S., New York University, Mathematics & Physics (1986)

Current Research and Scholarly Interests


My main research interests lie in the areas of theoretical condensed matter physics and computational physics. My research effort focuses on using the tools of computational physics to understand quantum materials. Fortunately, we are poised in an excellent position as the speed and cost of computers have allowed us to tackle heretofore unaddressed problems involving interacting systems. The goal of my research is to understand electron dynamics via a combination of analytical theory and numerical simulations to provide insight into materials of relevance to energy science. My group carries out numerical simulations on SIMES’ high-performance supercomputer and US and Canadian computational facilities. The specific focus of my group is the development of numerical methods and theories of photon-based spectroscopies of strongly correlated materials.

2017-18 Courses


Stanford Advisees


All Publications


  • All-optical materials design of chiral edge modes in transition-metal dichalcogenides NATURE COMMUNICATIONS Claassen, M., Jia, C., Moritz, B., Devereaux, T. P. 2016; 7

    Abstract

    Monolayer transition-metal dichalcogenides are novel materials which at low energies constitute a condensed-matter realization of massive relativistic fermions in two dimensions. Here, we show that this picture breaks for optical pumping-instead, the added complexity of a realistic materials description leads to a new mechanism to optically induce topologically protected chiral edge modes, facilitating optically switchable conduction channels that are insensitive to disorder. In contrast to graphene and previously discussed toy models, the underlying mechanism relies on the intrinsic three-band nature of transition-metal dichalcogenide monolayers near the band edges. Photo-induced band inversions scale linearly in applied pump field and exhibit transitions from one to two chiral edge modes on sweeping from red to blue detuning. We develop an ab initio strategy to understand non-equilibrium Floquet-Bloch bands and topological transitions, and illustrate for WS2 that control of chiral edge modes can be dictated solely from symmetry principles and is not qualitatively sensitive to microscopic materials details.

    View details for DOI 10.1038/ncomms13074

    View details for Web of Science ID 000385546900002

    View details for PubMedID 27721504

  • Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film PHYSICAL REVIEW B Zhang, Y., Yi, M., Liu, Z., Li, W., Lee, J. J., Moore, R. G., Hashimoto, M., Nakajima, M., Eisaki, H., Mo, S., Hussain, Z., Devereaux, T. P., Shen, Z., Lu, D. H. 2016; 94 (11)
  • Superconducting Gap Anisotropy in Monolayer FeSe Thin Film PHYSICAL REVIEW LETTERS Zhang, Y., Lee, J. J., Moore, R. G., Li, W., Yi, M., Hashimoto, M., Lu, D. H., Devereaux, T. P., Lee, D., Shen, Z. 2016; 117 (11)

    Abstract

    Superconductivity originates from pairing of electrons near the Fermi energy. The Fermi surface topology and pairing symmetry are thus two pivotal characteristics of a superconductor. Superconductivity in one monolayer (1 ML) FeSe thin film has attracted great interest recently due to its intriguing interfacial properties and possibly high superconducting transition temperature over 65 K. Here, we report high-resolution measurements of the Fermi surface and superconducting gaps in 1 ML FeSe using angle-resolved photoemission spectroscopy. Two ellipselike electron pockets are clearly resolved overlapping with each other at the Brillouin zone corner. The superconducting gap is nodeless but moderately anisotropic, which puts strong constraint on determining the pairing symmetry. The gap maxima locate on the d_{xy} bands along the major axis of the ellipse and four gap minima are observed at the intersections of electron pockets. The gap maximum location combined with the Fermi surface geometry deviate from a single d-wave, extended s-wave or s_{±} gap function, suggesting an important role of the multiorbital nature of Fermi surface and orbital-dependent pairing in 1 ML FeSe. The gap minima location may be explained by a sign change on the electron pockets, or a competition between intra- and interorbital pairing.

    View details for DOI 10.1103/PhysRevLett.117.117001

    View details for Web of Science ID 000383248000010

    View details for PubMedID 27661715

  • Using RIXS to Uncover Elementary Charge and Spin Excitations PHYSICAL REVIEW X Jia, C., Wohlfeld, K., Wang, Y., Moritz, B., Devereaux, T. P. 2016; 6 (2)
  • Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo PHYSICAL REVIEW B Kung, Y. F., Chen, C., Wang, Y., Huang, E. W., Nowadnick, E. A., Moritz, B., Scalettar, R. T., Johnston, S., Devereaux, T. P. 2016; 93 (15)
  • Nonequilibrium Dynamical Mean-Field Theory for the Charge-Density-Wave Phase of the Falicov-Kimball Model JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM Matveev, O. P., Shvaika, A. M., Devereaux, T. P., Freericks, J. K. 2016; 29 (3): 581-585
  • Using Nonequilibrium Dynamics to Probe Competing Orders in a Mott-Peierls System PHYSICAL REVIEW LETTERS Wang, Y., Moritz, B., Chen, C., Jia, C. J., van Veenendaal, M., Devereaux, T. P. 2016; 116 (8)

    Abstract

    Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softening due to a stronger coupling near k_{F}. This behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.

    View details for DOI 10.1103/PhysRevLett.116.086401

    View details for Web of Science ID 000370816600003

    View details for PubMedID 26967429

  • Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates SCIENTIFIC REPORTS Huang, H. Y., Jia, C. J., Chen, Z. Y., Wohlfeld, K., Moritz, B., Devereaux, T. P., Wu, W. B., Okamoto, J., Lee, W. S., Hashimoto, M., He, Y., Shen, Z. X., Yoshida, Y., Eisaki, H., Mou, C. Y., Chen, C. T., Huang, D. J. 2016; 6

    View details for DOI 10.1038/srep19657

    View details for Web of Science ID 000368667100002

  • Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi, Sb)2Te3 film. Scientific reports Li, W., Claassen, M., Chang, C., Moritz, B., Jia, T., Zhang, C., Rebec, S., Lee, J. J., Hashimoto, M., Lu, D., Moore, R. G., Moodera, J. S., Devereaux, T. P., Shen, Z. 2016; 6: 32732-?

    Abstract

    The experimental realization of the quantum anomalous Hall (QAH) effect in magnetically-doped (Bi, Sb)2Te3 films stands out as a landmark of modern condensed matter physics. However, ultra-low temperatures down to few tens of mK are needed to reach the quantization of Hall resistance, which is two orders of magnitude lower than the ferromagnetic phase transition temperature of the films. Here, we systematically study the band structure of V-doped (Bi, Sb)2Te3 thin films by angle-resolved photoemission spectroscopy (ARPES) and show unambiguously that the bulk valence band (BVB) maximum lies higher in energy than the surface state Dirac point. Our results demonstrate clear evidence that localization of BVB carriers plays an active role and can account for the temperature discrepancy.

    View details for DOI 10.1038/srep32732

    View details for PubMedID 27599406

  • Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields SCIENCE Gerber, S., Jang, H., Nojiri, H., Matsuzawa, S., Yasumura, H., Bonn, D. A., Liang, R., Hardy, W. N., Islam, Z., Mehta, A., Song, S., Sikorski, M., Stefanescu, D., Feng, Y., Kivelson, S. A., Devereaux, T. P., Shen, Z., Kao, C., Lee, W., Zhu, D., Lee, J. 2015; 350 (6263): 949-952

    View details for DOI 10.1126/science.aac6257

    View details for Web of Science ID 000364955200042

    View details for PubMedID 26541608

  • Doping evolution of spin and charge excitations in the Hubbard model PHYSICAL REVIEW B Kung, Y. F., Nowadnick, E. A., Jia, C. J., Johnston, S., Moritz, B., Scalettar, R. T., Devereaux, T. P. 2015; 92 (19)
  • Magnetic excitations and phonons simultaneously studied by resonant inelastic x-ray scattering in optimally doped Bi1.5Pb0.55Sr1.6La0.4CuO6+delta PHYSICAL REVIEW B Peng, Y. Y., Hashimoto, M., Sala, M. M., AMORESE, A., Brookes, N. B., Dellea, G., Lee, W., Minola, M., Schmitt, T., Yoshida, Y., Zhou, K., Eisaki, H., Devereaux, T. P., Shen, Z., Braicovich, L., Ghiringhelli, G. 2015; 92 (6)
  • Origin of strong dispersion in Hubbard insulators PHYSICAL REVIEW B Wang, Y., Wohlfeld, K., Moritz, B., Jia, C. J., van Veenendaal, M., Wu, K., Chen, C., Devereaux, T. P. 2015; 92 (7)
  • Fidelity study of superconductivity in extended Hubbard models PHYSICAL REVIEW B Plonka, N., Jia, C. J., Wang, Y., Moritz, B., Devereaux, T. P. 2015; 92 (2)
  • Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators. Physical review letters Claassen, M., Lee, C. H., Thomale, R., Qi, X., Devereaux, T. P. 2015; 114 (23): 236802-?

    Abstract

    We develop a first quantization description of fractional Chern insulators that is the dual of the conventional fractional quantum Hall (FQH) problem, with the roles of position and momentum interchanged. In this picture, FQH states are described by anisotropic FQH liquids forming in momentum-space Landau levels in a fluctuating magnetic field. The fundamental quantum geometry of the problem emerges from the interplay of single-body and interaction metrics, both of which act as momentum-space duals of the geometrical picture of the anisotropic FQH effect. We then present a novel broad class of ideal Chern insulator lattice models that act as duals of the isotropic FQH effect. The interacting problem is well-captured by Haldane pseudopotentials and affords a detailed microscopic understanding of the interplay of interactions and nontrivial quantum geometry.

    View details for PubMedID 26196819

  • Position-Momentum Duality and Fractional Quantum Hall Effect in Chern Insulators PHYSICAL REVIEW LETTERS Claassen, M., Lee, C. H., Thomale, R., Qi, X., Devereaux, T. P. 2015; 114 (23)
  • Classification of collective modes in a charge density wave by momentum-dependent modulation of the electronic band structure PHYSICAL REVIEW B Leuenberger, D., Sobota, J. A., Yang, S., Kemper, A. F., Giraldo-Gallo, P., Moore, R. G., Fisher, I. R., Kirchmann, P. S., Devereaux, T. P., Shen, Z. 2015; 91 (20)
  • Renormalization of spectra by phase competition in the half-filled Hubbard-Holstein model PHYSICAL REVIEW B Nowadnick, E. A., Johnston, S., Moritz, B., Devereaux, T. P. 2015; 91 (16)
  • Fractionalization, entanglement, and separation: Understanding the collective excitations in a spin-orbital chain PHYSICAL REVIEW B Chen, C., van Veenendaal, M., Devereaux, T. P., Wohlfeld, K. 2015; 91 (16)
  • Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory 14th European Conference on Physics of Magnetism (PM) Wohlfeld, K., Chen, C., van Veenendaal, M., Devereaux, T. P. POLISH ACAD SCIENCES INST PHYSICS. 2015: 201–3
  • Probing LaMO3 Metal and Oxygen Partial Density of States Using X-ray Emission, Absorption, and Photoelectron Spectroscopy JOURNAL OF PHYSICAL CHEMISTRY C Hong, W. T., Stoerzinger, K. A., Moritz, B., Devereaux, T. P., Yang, W., Shao-Horn, Y. 2015; 119 (4): 2063-2072

    View details for DOI 10.1021/jp511931y

    View details for Web of Science ID 000348753000052

  • Interface ferroelectric transition near the gap-opening temperature in a single-unit-cell FeSe film grown on Nb-Doped SrTiO3 substrate. Physical review letters Cui, Y., Moore, R. G., Zhang, A., Tian, Y., Lee, J. J., Schmitt, F. T., Zhang, W., Li, W., Yi, M., Liu, Z., Hashimoto, M., Zhang, Y., Lu, D., Devereaux, T. P., Wang, L., Ma, X., Zhang, Q., Xue, Q., Lee, D., Shen, Z. 2015; 114 (3): 037002-?

    Abstract

    We report findings of strong anomalies in both mutual inductance and inelastic Raman spectroscopy measurements of single-unit-cell FeSe film grown on Nb-doped SrTiO3, which occur near the temperature where the superconductinglike energy gap opens. Analysis suggests that the anomaly is associated with a broadened ferroelectric transition in a thin layer near the FeSe/SrTiO3 interface. The coincidence of the ferroelectric transition and gap-opening temperatures adds credence to the central role played by the film-substrate interaction on the strong Cooper pairing in this system. We discuss scenarios that could explain such a coincidence.

    View details for PubMedID 25659015

  • Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO_{3} Substrate. Physical review letters Cui, Y., Moore, R. G., Zhang, A., Tian, Y., Lee, J. J., Schmitt, F. T., Zhang, W., Li, W., Yi, M., Liu, Z., Hashimoto, M., Zhang, Y., Lu, D., Devereaux, T. P., Wang, L., Ma, X., Zhang, Q., Xue, Q., Lee, D., Shen, Z. 2015; 114 (3): 037002-?

    View details for PubMedID 25659015

  • Direct spectroscopic evidence for phase competition between the pseudogap and superconductivity in Bi2Sr2CaCu2O8+delta NATURE MATERIALS Hashimoto, M., Nowadnick, E. A., He, R., Vishik, I. M., Moritz, B., He, Y., Tanaka, K., Moore, R. G., Lu, D., Yoshida, Y., Ishikado, M., Sasagawa, T., Fujita, K., Ishida, S., Uchida, S., Eisaki, H., Hussain, Z., Devereaux, T. P., Shen, Z. 2015; 14 (1): 37-42

    Abstract

    In the high-temperature (Tc) cuprate superconductors, a growing body of evidence suggests that the pseudogap phase, existing below the pseudogap temperature T(∗), is characterized by some broken electronic symmetries distinct from those associated with superconductivity. In particular, recent scattering experiments have suggested that charge ordering competes with superconductivity. However, no direct link of an interplay between the two phases has been identified from the important low-energy excitations. Here, we report an antagonistic singularity at Tc in the spectral weight of Bi2Sr2CaCu2O8+δ as compelling evidence for phase competition, which persists up to a high hole concentration p ~ 0.22. Comparison with theoretical calculations confirms that the singularity is a signature of competition between the order parameters for the pseudogap and superconductivity. The observation of the spectroscopic singularity at finite temperatures over a wide doping range provides new insights into the nature of the competitive interplay between the two orders and the complex phase diagram near the pseudogap critical point.

    View details for DOI 10.1038/NMAT4116

    View details for Web of Science ID 000346430100011

    View details for PubMedID 25362356

  • Theory of Floquet band formation and local pseudospin textures in pump-probe photoemission of graphene. Nature communications Sentef, M. A., Claassen, M., Kemper, A. F., Moritz, B., Oka, T., Freericks, J. K., Devereaux, T. P. 2015; 6: 7047-?

    Abstract

    Ultrafast materials science promises optical control of physical properties of solids. Continuous-wave circularly polarized laser driving was predicted to induce a light-matter coupled state with an energy gap and a quantum Hall effect, coined Floquet topological insulator. Whereas the envisioned Floquet topological insulator requires high-frequency pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that short optical pulses attainable in experiments can lead to local spectral gaps and novel pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these states by measuring sizeable energy gaps and Floquet band formation on femtosecond time scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify new states with optically induced nontrivial changes of sublattice mixing that leads to Berry curvature corrections of electrical transport and magnetization.

    View details for DOI 10.1038/ncomms8047

    View details for PubMedID 25958840

  • Direct characterization of photoinduced lattice dynamics in BaFe2As2. Nature communications Gerber, S., Kim, K. W., Zhang, Y., Zhu, D., Plonka, N., Yi, M., Dakovski, G. L., Leuenberger, D., Kirchmann, P. S., Moore, R. G., Chollet, M., Glownia, J. M., Feng, Y., Lee, J., Mehta, A., Kemper, A. F., Wolf, T., Chuang, Y., Hussain, Z., Kao, C., Moritz, B., Shen, Z., Devereaux, T. P., Lee, W. 2015; 6: 7377-?

    Abstract

    Ultrafast light pulses can modify electronic properties of quantum materials by perturbing the underlying, intertwined degrees of freedom. In particular, iron-based superconductors exhibit a strong coupling among electronic nematic fluctuations, spins and the lattice, serving as a playground for ultrafast manipulation. Here we use time-resolved X-ray scattering to measure the lattice dynamics of photoexcited BaFe2As2. On optical excitation, no signature of an ultrafast change of the crystal symmetry is observed, but the lattice oscillates rapidly in time due to the coherent excitation of an A1g mode that modulates the Fe-As-Fe bond angle. We directly quantify the coherent lattice dynamics and show that even a small photoinduced lattice distortion can induce notable changes in the electronic and magnetic properties. Our analysis implies that transient structural modification can be an effective tool for manipulating the electronic properties of multi-orbital systems, where electronic instabilities are sensitive to the orbital character of bands.

    View details for DOI 10.1038/ncomms8377

    View details for PubMedID 26051704

  • Balancing Act: Evidence for a Strong Subdominant d-Wave Pairing Channel in Ba0.6K0.4Fe2As2 PHYSICAL REVIEW X Boehm, T., Kemper, A. F., Moritz, B., Kretzschmar, F., Muschler, B., Eiter, H., Hackl, R., Devereaux, T. P., Scalapino, D. J., Wen, H. 2014; 4 (4)
  • Numerical exploration of spontaneous broken symmetries in multiorbital Hubbard models PHYSICAL REVIEW B Kung, Y. F., Chen, C., Moritz, B., Johnston, S., Thomale, R., Devereaux, T. P. 2014; 90 (22)
  • Interfacial mode coupling as the origin of the enhancement of T-c in FeSe films on SrTiO3 NATURE Lee, J. J., Schmitt, F. T., Moore, R. G., Johnston, S., Cui, Y., Li, W., Yi, M., Liu, Z. K., Hashimoto, M., Zhang, Y., Lu, D. H., Devereaux, T. P., Lee, D., Shen, Z. 2014; 515 (7526): 245-U207

    Abstract

    Films of iron selenide (FeSe) one unit cell thick grown on strontium titanate (SrTiO3 or STO) substrates have recently shown superconducting energy gaps opening at temperatures close to the boiling point of liquid nitrogen (77 kelvin), which is a record for the iron-based superconductors. The gap opening temperature usually sets the superconducting transition temperature Tc, as the gap signals the formation of Cooper pairs, the bound electron states responsible for superconductivity. To understand why Cooper pairs form at such high temperatures, we examine the role of the SrTiO3 substrate. Here we report high-resolution angle-resolved photoemission spectroscopy results that reveal an unexpected characteristic of the single-unit-cell FeSe/SrTiO3 system: shake-off bands suggesting the presence of bosonic modes, most probably oxygen optical phonons in SrTiO3 (refs 5, 6, 7), which couple to the FeSe electrons with only a small momentum transfer. Such interfacial coupling assists superconductivity in most channels, including those mediated by spin fluctuations. Our calculations suggest that this coupling is responsible for raising the superconducting gap opening temperature in single-unit-cell FeSe/SrTiO3.

    View details for DOI 10.1038/nature13894

    View details for Web of Science ID 000344631400045

    View details for PubMedID 25391962

  • Beyond Planck-Einstein quanta: Amplitude-driven quantum excitation PHYSICAL REVIEW B Shen, W., Devereaux, T. P., Freericks, J. K. 2014; 90 (19)
  • Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors NATURE PHYSICS Lee, W. S., Lee, J. J., Nowadnick, E. A., Gerber, S., Tabis, W., Huang, S. W., Strocov, V. N., Motoyama, E. M., Yu, G., Moritz, B., Huang, H. Y., Wang, R. P., Huang, Y. B., Wu, W. B., Chen, C. T., Huang, D. J., Greven, M., Schmitt, T., Shen, Z. X., Devereaux, T. P. 2014; 10 (11): 883-889

    View details for DOI 10.1038/NPHYS3117

    View details for Web of Science ID 000344846700024

  • Distinguishing Bulk and Surface Electron-Phonon Coupling in the Topological Insulator Bi2Se3 Using Time-Resolved Photoemission Spectroscopy PHYSICAL REVIEW LETTERS Sobota, J. A., Yang, S., Leuenberger, D., Kemper, A. F., Analytis, J. G., Fisher, I. R., Kirchmann, P. S., Devereaux, T. P., Shen, Z. 2014; 113 (15)
  • Exact solution for high harmonic generation and the response to an ac driving field for a charge density wave insulator PHYSICAL REVIEW B Shen, W., Kemper, A. F., Devereaux, T. P., Freericks, J. K. 2014; 90 (11)
  • Effect of dynamical spectral weight redistribution on effective interactions in time-resolved spectroscopy PHYSICAL REVIEW B Kemper, A. F., Sentef, M. A., Moritz, B., Freericks, J. K., Devereaux, T. P. 2014; 90 (7)
  • Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA Sobota, J. A., Yang, S., Leuenberger, D., Kemper, A. F., Analytis, J. G., Fisher, I. R., Kirchmann, P. S., Devereaux, T. P., Shen, Z. 2014; 195: 249-257
  • Energy gaps in high-transition-temperature cuprate superconductors NATURE PHYSICS Hashimoto, M., Vishik, I. M., He, R., Devereaux, T. P., Shen, Z. 2014; 10 (7): 483-495

    View details for DOI 10.1038/NPHYS3009

    View details for Web of Science ID 000338843100014

  • Direct observation of bulk charge modulations in optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+delta PHYSICAL REVIEW B Hashimoto, M., Ghiringhelli, G., Lee, W., Dellea, G., AMORESE, A., Mazzoli, C., KUMMER, K., Brookes, N. B., Moritz, B., Yoshida, Y., Eisaki, H., Hussain, Z., Devereaux, T. P., Shen, Z., Braicovich, L. 2014; 89 (22)
  • Exact solution for Bloch oscillations of a simple charge-density-wave insulator PHYSICAL REVIEW B Shen, W., Devereaux, T. P., Freericks, J. K. 2014; 89 (23)
  • Bandgap closure and reopening in CsAuI3 at high pressure PHYSICAL REVIEW B Wang, S., Kemper, A. F., Baldini, M., SHAPIRO, M. C., Riggs, S. C., Zhao, Z., Liu, Z., Devereaux, T. P., Geballe, T. H., Fisher, I. R., Mao, W. L. 2014; 89 (24)
  • Angle-resolved photoemission spectroscopy study of HgBa2CuO4+delta PHYSICAL REVIEW B Vishik, I. M., Barisic, N., Chan, M. K., Li, Y., Xia, D. D., Yu, G., Zhao, X., Lee, W. S., Meevasana, W., Devereaux, T. P., Greven, M., Shen, Z. 2014; 89 (19)
  • Nonequilibrium "Melting" of a Charge Density Wave Insulator via an Ultrafast Laser Pulse. Physical review letters Shen, W., Ge, Y., Liu, A. Y., Krishnamurthy, H. R., Devereaux, T. P., Freericks, J. K. 2014; 112 (17): 176404-?

    Abstract

    We employ an exact solution of the simplest model for pump-probe time-resolved photoemission spectroscopy in charge-density-wave systems to show how, in nonequilibrium, the gap in the density of states disappears while the charge density remains modulated, and then the gap reforms after the pulse has passed. This nonequilibrium scenario qualitatively describes the common short-time experimental features in TaS_{2} and TbTe_{3}, indicating a quasiuniversality for nonequilibrium "melting" with qualitative features that can be easily understood within a simple picture.

    View details for PubMedID 24836262

  • Real-space visualization of remnant mott gap and magnon excitations. Physical review letters Wang, Y., Jia, C. J., Moritz, B., Devereaux, T. P. 2014; 112 (15): 156402-?

    Abstract

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

    View details for PubMedID 24785060

  • Dynamic competition between spin-density wave order and superconductivity in underdoped Ba1-xKxFe2As2 NATURE COMMUNICATIONS Yi, M., Zhang, Y., Liu, Z., Ding, X., Chu, J., Kemper, A. F., Plonka, N., Moritz, B., Hashimoto, M., Mo, S., Hussain, Z., Devereaux, T. P., Fisher, I. R., Wen, H. H., Shen, Z., Lu, D. H. 2014; 5

    View details for DOI 10.1038/ncomms4711

    View details for Web of Science ID 000335223100002

    View details for PubMedID 24762657

  • Charge-orbital-lattice coupling effects in the dd excitation profile of one-dimensional cuprates PHYSICAL REVIEW B Lee, J. J., Moritz, B., Lee, W. S., Yi, M., Jia, C. J., Sorini, A. P., Kudo, K., Koike, Y., Zhou, K. J., Monney, C., Strocov, V., Patthey, L., Schmitt, T., Devereaux, T. P., Shen, Z. X. 2014; 89 (4)
  • Dynamic competition between spin-density wave order and superconductivity in underdoped Ba(1-x)K(x)Fe2As2. Nature communications Yi, M., Zhang, Y., Liu, Z., Ding, X., Chu, J., Kemper, A. F., Plonka, N., Moritz, B., Hashimoto, M., Mo, S., Hussain, Z., Devereaux, T. P., Fisher, I. R., Wen, H. H., Shen, Z., Lu, D. H. 2014; 5: 3711-?

    Abstract

    An intriguing aspect of unconventional superconductivity is that it always appears in the vicinity of other competing phases, whose suppression brings the full emergence of superconductivity. In the iron pnictides, these competing phases are marked by a tetragonal-to-orthorhombic structural transition and a collinear spin-density wave (SDW) transition. There has been macroscopic evidence for competition between these phases and superconductivity as the magnitude of both the orthorhombicity and magnetic moment are suppressed in the superconducting state. Here, using angle-resolved photoemission spectroscopy on detwinned underdoped Ba(1-x)K(x)Fe2As2, we observe a coexistence of both the SDW gap and superconducting gap in the same electronic structure. Furthermore, our data reveal that following the onset of superconductivity, the SDW gap decreases in magnitude and shifts in a direction consistent with a reduction of the orbital anisotropy. This observation provides direct spectroscopic evidence for the dynamic competition between superconductivity and both SDW and electronic nematic orders in these materials.

    View details for DOI 10.1038/ncomms4711

    View details for PubMedID 24762657

  • Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering. Nature communications Jia, C. J., Nowadnick, E. A., Wohlfeld, K., Kung, Y. F., Chen, C., Johnston, S., Tohyama, T., Moritz, B., Devereaux, T. P. 2014; 5: 3314-?

    View details for DOI 10.1038/ncomms4314

    View details for PubMedID 24577074

  • Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering. Nature communications Jia, C. J., Nowadnick, E. A., Wohlfeld, K., Kung, Y. F., Chen, C., Johnston, S., Tohyama, T., Moritz, B., Devereaux, T. P. 2014; 5: 3314-?

    Abstract

    How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.

    View details for DOI 10.1038/ncomms4314

    View details for PubMedID 24577074

  • Examining Electron-Boson Coupling Using Time-Resolved Spectroscopy PHYSICAL REVIEW X Sentef, M., Kemper, A. F., Moritz, B., Freericks, J. K., Shen, Z., Devereaux, T. P. 2013; 3 (4)
  • Tunneling spectroscopy for probing orbital anisotropy in iron pnictides PHYSICAL REVIEW B Plonka, N., Kemper, A. F., Graser, S., Kampf, A. P., Devereaux, T. P. 2013; 88 (17)
  • Existence of Orbital Order and its Fluctuation in Superconducting Ba(Fe1-xCox)(2)As-2 Single Crystals Revealed by X-ray Absorption Spectroscopy PHYSICAL REVIEW LETTERS Kim, Y. K., Jung, W. S., Han, G. R., Choi, K., Kim, K., Chen, C., Devereaux, T. P., Chainani, A., Miyawaki, J., Takata, Y., Tanaka, Y., Oura, M., Shin, S., SINGH, A. P., Lee, H. G., Kim, J., Kim, C. 2013; 111 (21)

    Abstract

    We performed temperature dependent x-ray linear dichroism (XLD) experiments on an iron pnictide system, Ba(Fe(1-x)Co(x))2As2 with x=0.00, 0.05, 0.08, and 0.10 to experimentally verify the existence of orbital ordering (OO). Substantial XLD was observed in polarization dependent x-ray absorption spectra of Fe L edges. By exploiting the difference in the temperature dependent behaviors, OO, and structure contributions to XLD could be clearly separated. The observed OO signal indicates different occupation numbers for d(yz) and d(zx) orbitals and supports the existence of ferro-OO. The results are also consistent with the theoretical prediction. Moreover, we find substantial OO signal well above the structural and magnetic transition temperatures, which suggests the existence of strong OO fluctuations up to high temperatures.

    View details for DOI 10.1103/PhysRevLett.111.217001

    View details for Web of Science ID 000327245600025

    View details for PubMedID 24313517

  • Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator Bi2Se3 PHYSICAL REVIEW LETTERS Sobota, J. A., Yang, S., Kemper, A. F., Lee, J. J., Schmitt, F. T., Li, W., Moore, R. G., Analytis, J. G., Fisher, I. R., Kirchmann, P. S., Devereaux, T. P., Shen, Z. 2013; 111 (13)

    Abstract

    We characterize the occupied and unoccupied electronic structure of the topological insulator Bi2Se3 by one-photon and two-photon angle-resolved photoemission spectroscopy and slab band structure calculations. We reveal a second, unoccupied Dirac surface state with similar electronic structure and physical origin to the well-known topological surface state. This state is energetically located 1.5 eV above the conduction band, which permits it to be directly excited by the output of a Ti:sapphire laser. This discovery demonstrates the feasibility of direct ultrafast optical coupling to a topologically protected, spin-textured surface state.

    View details for DOI 10.1103/PhysRevLett.111.136802

    View details for Web of Science ID 000324762300016

    View details for PubMedID 24116801

  • Time-dependent charge-order and spin-order recovery in striped systems PHYSICAL REVIEW B Kung, Y. F., Lee, W., Chen, C., Kemper, A. F., Sorini, A. P., Moritz, B., Devereaux, T. P. 2013; 88 (12)
  • Electron-mediated relaxation following ultrafast pumping of strongly correlated materials: model evidence of a correlation-tuned crossover between thermal and nonthermal states. Physical review letters Moritz, B., Kemper, A. F., Sentef, M., Devereaux, T. P., Freericks, J. K. 2013; 111 (7): 077401-?

    Abstract

    We examine electron-electron mediated relaxation following ultrafast electric field pump excitation of the fermionic degrees of freedom in the Falicov-Kimball model for correlated electrons. The results reveal a dichotomy in the temporal evolution of the system as one tunes through the Mott metal-to-insulator transition: in the metallic regime relaxation can be characterized by evolution toward a steady state well described by Fermi-Dirac statistics with an increased effective temperature; however, in the insulating regime this quasithermal paradigm breaks down with relaxation toward a nonthermal state with a complicated electronic distribution as a function of momentum. We characterize the behavior by studying changes in the energy, photoemission response, and electronic distribution as functions of time. This relaxation may be observable qualitatively on short enough time scales that the electrons behave like an isolated system not in contact with additional degrees of freedom which would act as a thermal bath, especially when using strong driving fields and studying materials whose physics may manifest the effects of correlations.

    View details for PubMedID 23992080

  • Electron-Mediated Relaxation Following Ultrafast Pumping of Strongly Correlated Materials: Model Evidence of a Correlation-Tuned Crossover between Thermal and Nonthermal States PHYSICAL REVIEW LETTERS Moritz, B., Kemper, A. F., Sentef, M., Devereaux, T. P., Freericks, J. K. 2013; 111 (7)
  • Mapping of unoccupied states and relevant bosonic modes via the time-dependent momentum distribution PHYSICAL REVIEW B Kemper, A. F., Sentef, M., Moritz, B., Kao, C. C., Shen, Z. X., Freericks, J. K., Devereaux, T. P. 2013; 87 (23)
  • Role of Lattice Coupling in Establishing Electronic and Magnetic Properties in Quasi-One-Dimensional Cuprates PHYSICAL REVIEW LETTERS Lee, W. S., Johnston, S., Moritz, B., Lee, J., Yi, M., Zhou, K. J., Schmitt, T., Patthey, L., Strocov, V., Kudo, K., Koike, Y., van den Brink, J., Devereaux, T. P., Shen, Z. X. 2013; 110 (26)

    Abstract

    High resolution resonant inelastic x-ray scattering has been performed to reveal the role of lattice coupling in a family of quasi-1D insulating cuprates, Ca2+5xY2-5xCu5O10. Site-dependent low-energy excitations arising from progressive emissions of a 70 meV lattice vibrational mode are resolved for the first time, providing a direct measurement of electron-lattice coupling strength. We show that such electron-lattice coupling causes doping-dependent distortions of the Cu-O-Cu bond angle, which sets the intrachain spin exchange interactions. Our results indicate that the lattice degrees of freedom are fully integrated into the electronic behavior in low-dimensional systems.

    View details for DOI 10.1103/PhysRevLett.110.265502

    View details for Web of Science ID 000320960300012

    View details for PubMedID 23848894

  • Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model PHYSICAL REVIEW B Johnston, S., Nowadnick, E. A., Kung, Y. F., Moritz, B., Scalettar, R. T., Devereaux, T. P. 2013; 87 (23)
  • Doping evolution of the oxygen K-edge x-ray absorption spectra of cuprate superconductors using a three-orbital Hubbard model PHYSICAL REVIEW B Chen, C., Sentef, M., Kung, Y. F., Jia, C. J., Thomale, R., Moritz, B., Kampf, A. P., Devereaux, T. P. 2013; 87 (16)
  • Real-Time Manifestation of Strongly Coupled Spin and Charge Order Parameters in Stripe-Ordered La_{1.75}Sr_{0.25}NiO_{4} Nickelate Crystals Using Time-Resolved Resonant X-Ray Diffraction. Physical review letters Chuang, Y. D., Lee, W. S., Kung, Y. F., Sorini, A. P., Moritz, B., Moore, R. G., Patthey, L., Trigo, M., Lu, D. H., Kirchmann, P. S., Yi, M., Krupin, O., Langner, M., Zhu, Y., Zhou, S. Y., Reis, D. A., Huse, N., ROBINSON, J. S., Kaindl, R. A., Schoenlein, R. W., Johnson, S. L., Först, M., Doering, D., Denes, P., Schlotter, W. F., Turner, J. J., Sasagawa, T., Hussain, Z., Shen, Z. X., Devereaux, T. P. 2013; 110 (12): 127404-?

    Abstract

    We investigate the order parameter dynamics of the stripe-ordered nickelate, La_{1.75}Sr_{0.25}NiO_{4}, using time-resolved resonant x-ray diffraction. In spite of distinct spin and charge energy scales, the two order parameters' amplitude dynamics are found to be linked together due to strong coupling. Additionally, the vector nature of the spin sector introduces a longer reorientation time scale which is absent in the charge sector. These findings demonstrate that the correlation linking the symmetry-broken states does not unbind during the nonequilibrium process, and the time scales are not necessarily associated with the characteristic energy scales of individual degrees of freedom.

    View details for PubMedID 25166848

  • Real-Time Manifestation of Strongly Coupled Spin and Charge Order Parameters in Stripe-Ordered La1.75Sr0.25NiO4 Nickelate Crystals Using Time-Resolved Resonant X-Ray Diffraction PHYSICAL REVIEW LETTERS Chuang, Y. D., Lee, W. S., Kung, Y. F., Sorini, A. P., Moritz, B., Moore, R. G., Patthey, L., Trigo, M., Lu, D. H., Kirchmann, P. S., Yi, M., Krupin, O., Langner, M., Zhu, Y., Zhou, S. Y., Reis, D. A., Huse, N., ROBINSON, J. S., Kaindl, R. A., Schoenlein, R. W., Johnson, S. L., Foerst, M., Doering, D., Denes, P., Schlotter, W. F., Turner, J. J., Sasagawa, T., Hussain, Z., Shen, Z. X., Devereaux, T. P. 2013; 110 (12)
  • Hot electron transport in a strongly correlated transition-metal oxide SCIENTIFIC REPORTS Rana, K. G., Yajima, T., Parui, S., Kemper, A. F., Devereaux, T. P., Hikita, Y., Hwang, H. Y., Banerjee, T. 2013; 3

    Abstract

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La₀.₇Sr₀.₃MnO₃ (LSMO)- Nb-doped SrTiO₃ (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at -1.9 V, increasing to 2.02 ± 0.16 u.c. at -1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges.

    View details for DOI 10.1038/srep01274

    View details for Web of Science ID 000314864800002

    View details for PubMedID 23429420

  • Theoretical description of high-order harmonic generation in solids NEW JOURNAL OF PHYSICS Kemper, A. F., Moritz, B., Freericks, J. K., Devereaux, T. P. 2013; 15
  • Measurement of Coherent Polarons in the Strongly Coupled Antiferromagnetically Ordered Iron-Chalcogenide Fe1.02Te using Angle-Resolved Photoemission Spectroscopy PHYSICAL REVIEW LETTERS Liu, Z. K., He, R., Lu, D. H., Yi, M., Chen, Y. L., Hashimoto, M., Moore, R. G., Mo, S., Nowadnick, E. A., Hu, J., Liu, T. J., Mao, Z. Q., Devereaux, T. P., Hussain, Z., Shen, Z. 2013; 110 (3)

    Abstract

    The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe(1.02)Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit a "peak-dip-hump" line shape associated with two clearly separate branches of dispersion, characteristics of polarons seen in manganites and lightly doped cuprates. As temperature increases towards the Néel temperature (T(N)), we observe a decreasing renormalization of the peak dispersion and a counterintuitive sharpening of the hump linewidth, suggestive of an intimate connection between the weakening electron-phonon (e-ph) coupling and antiferromagnetism. Our finding points to the highly correlated nature of the Fe(1.02)Te ground state featured by strong interactions among the charge, spin, and lattice and a good metallicity plausibly contributed by the coherent polaron motion.

    View details for DOI 10.1103/PhysRevLett.110.037003

    View details for Web of Science ID 000313755000014

    View details for PubMedID 23373946

  • Alternative route to charge density wave formation in multiband systems PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Eiter, H., Lavagnini, M., Hackl, R., Nowadnick, E. A., Kemper, A. F., Devereaux, T. P., Chu, J., Analytis, J. G., Fisher, I. R., Degiorgi, L. 2013; 110 (1): 64-69

    Abstract

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.

    View details for DOI 10.1073/pnas.1214745110

    View details for Web of Science ID 000313630300027

    View details for PubMedID 23248317

  • Competition Between Antiferromagnetic and Charge-Density-Wave Order in the Half-Filled Hubbard-Holstein Model PHYSICAL REVIEW LETTERS Nowadnick, E. A., Johnston, S., Moritz, B., Scalettar, R. T., Devereaux, T. P. 2012; 109 (24)

    Abstract

    We present a determinant quantum Monte Carlo study of the competition between instantaneous on-site Coulomb repulsion and retarded phonon-mediated attraction between electrons, as described by the two-dimensional Hubbard-Holstein model. At half filling, we find a strong competition between antiferromagnetism (AFM) and charge-density-wave (CDW) order. We demonstrate that a simple picture of AFM-CDW competition that incorporates the phonon-mediated attraction into an effective-U Hubbard model requires significant refinement. Specifically, retardation effects slow the onset of charge order so that CDW order remains absent even when the effective U is negative. This delay opens a window where neither AFM nor CDW order is well established and where there are signatures of a possible metallic phase.

    View details for DOI 10.1103/PhysRevLett.109.246404

    View details for Web of Science ID 000312068300027

    View details for PubMedID 23368352

  • Uncovering selective excitations using the resonant profile of indirect inelastic x-ray scattering in correlated materials: observing two-magnon scattering and relation to the dynamical structure factor NEW JOURNAL OF PHYSICS Jia, C. J., Chen, C., Sorini, A. P., Moritz, B., Devereaux, T. P. 2012; 14
  • X-ray Emission Spectroscopy of Cerium Across the gamma-alpha Volume Collapse Transition PHYSICAL REVIEW LETTERS Lipp, M. J., Sorini, A. P., Bradley, J., Maddox, B., Moore, K. T., Cynn, H., Devereaux, T. P., Xiao, Y., Chow, P., Evans, W. J. 2012; 109 (19)

    Abstract

    High-pressure x-ray emission measurements are used to provide crucial evidence in the longstanding debate over the nature of the isostructural (α, γ) volume collapse in elemental cerium. Extended local atomic model calculations show that the satellite of the Lγ emission line offers direct access to the total angular momentum observable (J(2)). This satellite experiences a 30% steplike decrease across the volume collapse, validating the Kondo model in conjunction with previous measurements. Direct comparisons are made with previous predictions by dynamical mean field theory. A general experimental methodology is demonstrated for analogous work on a wide range of strongly correlated f-electron systems.

    View details for DOI 10.1103/PhysRevLett.109.195705

    View details for Web of Science ID 000310869600010

    View details for PubMedID 23215404

  • Phase competition in trisected superconducting dome PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Vishik, I. M., Hashimoto, M., He, R., LeeB, W., Schmitt, F., Lu, D., Moore, R. G., Zhang, C., Meevasana, W., Sasagawa, T., Uchida, S., Fujita, K., Ishida, S., Ishikado, M., Yoshida, Y., Eisaki, H., Hussain, Z., Devereaux, T. P., Shen, Z. 2012; 109 (45): 18332-18337

    Abstract

    A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi(2)Sr(2)CaCu(2)O(8+δ), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T(c) and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.

    View details for DOI 10.1073/pnas.1209471109

    View details for Web of Science ID 000311156700031

    View details for PubMedID 23093670

  • Pulsed high harmonic generation of light due to pumped Bloch oscillations in noninteracting metals PHYSICA SCRIPTA Freericks, J. K., Liu, A. Y., Kemper, A. F., Devereaux, T. P. 2012; T151
  • Quantum Dynamics of the Hubbard-Holstein Model in Equilibrium and Nonequilibrium: Application to Pump-Probe Phenomena PHYSICAL REVIEW LETTERS De Filippis, G., Cataudella, V., Nowadnick, E. A., Devereaux, T. P., Mishchenko, A. S., Nagaosa, N. 2012; 109 (17)

    Abstract

    The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultrashort powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a three-peak structure in agreement with experimental observations. After an ultrashort pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period T(ph)≈80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high T(c) compounds: the time span of the pump light pulse τ(pump) has to be shorter than the phonon oscillation period T(ph).

    View details for DOI 10.1103/PhysRevLett.109.176402

    View details for Web of Science ID 000310200100023

    View details for PubMedID 23215207

  • Quasiparticle interference and the interplay between superconductivity and density wave order in the cuprates PHYSICAL REVIEW B Nowadnick, E. A., Moritz, B., Devereaux, T. P. 2012; 86 (13)
  • Superconductivity distorted by the coexisting pseudogap in the antinodal region of Bi1.5Pb0.55Sr1.6La0.4CuO6+delta: A photon-energy-dependent angle-resolved photoemission study PHYSICAL REVIEW B Hashimoto, M., He, R., Vishik, I. M., Schmitt, F., Moore, R. G., Lu, D. H., Yoshida, Y., Eisaki, H., Hussain, Z., Devereaux, T. P., Shen, Z. 2012; 86 (9)
  • Phase fluctuations and the absence of topological defects in a photo-excited charge-ordered nickelate NATURE COMMUNICATIONS Lee, W. S., Chuang, Y. D., Moore, R. G., Zhu, Y., Patthey, L., Trigo, M., Lu, D. H., Kirchmann, P. S., Krupin, O., Yi, M., Langner, M., Huse, N., ROBINSON, J. S., Chen, Y., Zhou, S. Y., Coslovich, G., Huber, B., Reis, D. A., Kaindl, R. A., Schoenlein, R. W., Doering, D., Denes, P., Schlotter, W. F., Turner, J. J., Johnson, S. L., Foerst, M., Sasagawa, T., Kung, Y. F., Sorini, A. P., Kemper, A. F., Moritz, B., Devereaux, T. P., Lee, D., Shen, Z. X., Hussain, Z. 2012; 3

    Abstract

    The dynamics of an order parameter's amplitude and phase determines the collective behaviour of novel states emerging in complex materials. Time- and momentum-resolved pump-probe spectroscopy, by virtue of measuring material properties at atomic and electronic time scales out of equilibrium, can decouple entangled degrees of freedom by visualizing their corresponding dynamics in the time domain. Here we combine time-resolved femotosecond optical and resonant X-ray diffraction measurements on charge ordered La(1.75)Sr(0.25)NiO(4) to reveal unforeseen photoinduced phase fluctuations of the charge order parameter. Such fluctuations preserve long-range order without creating topological defects, distinct from thermal phase fluctuations near the critical temperature in equilibrium. Importantly, relaxation of the phase fluctuations is found to be an order of magnitude slower than that of the order parameter's amplitude fluctuations, and thus limits charge order recovery. This new aspect of phase fluctuations provides a more holistic view of the phase's importance in ordering phenomena of quantum matter.

    View details for DOI 10.1038/ncomms1837

    View details for Web of Science ID 000304611400033

    View details for PubMedID 22588300

  • Resonant enhancement of charge density wave diffraction in the rare-earth tritellurides PHYSICAL REVIEW B Lee, W. S., Sorini, A. P., Yi, M., Chuang, Y. D., Moritz, B., Yang, W. L., Chu, J., Kuo, H. H., Gonzalez, A. G., Fisher, I. R., Hussain, Z., Devereaux, T. P., Shen, Z. X. 2012; 85 (15)
  • Evidence for the Importance of Extended Coulomb Interactions and Forward Scattering in Cuprate Superconductors PHYSICAL REVIEW LETTERS Johnston, S., Vishik, I. M., Lee, W. S., Schmitt, F., Uchida, S., Fujita, K., Ishida, S., Nagaosa, N., Shen, Z. X., Devereaux, T. P. 2012; 108 (16)

    Abstract

    The prevalent view of the high-temperature superconducting cuprates is that their essential low-energy physics is captured by local Coulomb interactions. However, this view been challenged recently by studies indicating the importance of longer-range components. Motivated by this, we demonstrate the importance of these components by examining the electron-phonon (e-ph) interaction with acoustic phonons in connection with the recently discovered renormalization in the near-nodal low-energy (~8-15 meV) dispersion of Bi(2)Sr(2)CaCu(2)O(8+δ). By studying its nontrivial momentum and doping dependence we conclude a predominance of forward scattering arising from the direct interplay between the e-ph and extended Coulomb interactions. Our results thus demonstrate how the low-energy renormalization can provide a pathway to new insights into how these interactions interplay with one another and influence pairing and dynamics in the cuprates.

    View details for DOI 10.1103/PhysRevLett.108.166404

    View details for Web of Science ID 000303070600015

    View details for PubMedID 22680740

  • Phase transitions in spin-orbital models with spin-space anisotropies for iron pnictides: Monte Carlo simulations PHYSICAL REVIEW B Applegate, R., Singh, R. R., Chen, C., Devereaux, T. P. 2012; 85 (5)
  • Investigation of particle-hole asymmetry in the cuprates via electronic Raman scattering PHYSICAL REVIEW B Moritz, B., Johnston, S., Devereaux, T. P., Muschler, B., PRESTEL, W., Hackl, R., Lambacher, M., Erb, A., Komiya, S., Ando, Y. 2011; 84 (23)
  • Coincidence between energy gaps and Kohn anomalies in conventional superconductors PHYSICAL REVIEW B Johnston, S., Sorini, A. P., Moritz, B., Devereaux, T. P., Scalapino, D. J. 2011; 84 (17)
  • Fidelity study of the superconducting phase diagram in the two-dimensional single-band Hubbard model PHYSICAL REVIEW B Jia, C. J., Moritz, B., Chen, C., Shastry, B. S., Devereaux, T. P. 2011; 84 (12)
  • Polaronic metal in lightly doped high-T-c cuprates EPL Mishchenko, A. S., Nagaosa, N., Shen, K. M., Shen, Z., Zhou, X. J., Devereaux, T. P. 2011; 95 (5)
  • Probing high-energy electronic excitations in NiO using inelastic neutron scattering PHYSICAL REVIEW B Kim, Y., Sorini, A. P., Stock, C., Perring, T. G., van den Brink, J., Devereaux, T. P. 2011; 84 (8)
  • Resonant inelastic x-ray scattering studies of elementary excitations REVIEWS OF MODERN PHYSICS Ament, L. J., van Veenendaal, M., Devereaux, T. P., Hill, J. P., van den Brink, J. 2011; 83 (2)
  • Anisotropic quasiparticle lifetimes in Fe-based superconductors PHYSICAL REVIEW B Kemper, A. F., Korshunov, M. M., Devereaux, T. P., Fry, J. N., Cheng, H., Hirschfeld, P. J. 2011; 83 (18)
  • High-energy anomaly in Nd2-xCexCuO4 investigated by angle-resolved photoemission spectroscopy and quantum Monte Carlo simulations PHYSICAL REVIEW B Schmitt, F., Moritz, B., Johnston, S., Mo, S., Hashimoto, M., Moore, R. G., Lu, D., Motoyama, E., Greven, M., Devereaux, T. P., Shen, Z. 2011; 83 (19)
  • Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1-xCox)(2)As-2 above the spin density wave transition PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Yi, M., Lu, D., Chu, J., Analytis, J. G., Sorini, A. P., Kemper, A. F., Moritz, B., Mo, S., Moore, R. G., Hashimoto, M., Lee, W., Hussain, Z., Devereaux, T. P., Fisher, I. R., Shen, Z. 2011; 108 (17): 6878-6883
  • Reaffirming the d(x2-y2) Superconducting Gap Using the Autocorrelation Angle-Resolved Photoemission Spectroscopy of Bi1.5Pb0.55Sr1.6La0.4CuO6+delta PHYSICAL REVIEW LETTERS Hashimoto, M., He, R., Testaud, J. P., Meevasana, W., Moore, R. G., Lu, D. H., Yoshida, Y., Eisaki, H., Devereaux, T. P., Hussain, Z., Shen, Z. 2011; 106 (16)

    Abstract

    Knowledge of the gap function is important to understand the pairing mechanism for high-temperature (T(c)) superconductivity. However, Fourier transform scanning tunneling spectroscopy (FT STS) and angle-resolved photoemission spectroscopy (ARPES) in the cuprates have reported contradictory gap functions, with FT-STS results deviating strongly from a canonical d(x2-y2) form. By applying an "octet model" analysis to autocorrelation ARPES, we reveal that a contradiction occurs because the octet model does not consider the effects of matrix elements and the pseudogap. This reaffirms the canonical d(x2-y2) superconducting gap around the node, which can be directly determined from ARPES. Further, our study suggests that the FT-STS reported fluctuating superconductivity around the node at far above T(c) is not necessary to explain the existence of the quasiparticle interference at low energy.

    View details for DOI 10.1103/PhysRevLett.106.167003

    View details for Web of Science ID 000290097500013

    View details for PubMedID 21599403

  • Revealing the degree of magnetic frustration by non-magnetic impurities NEW JOURNAL OF PHYSICS Chen, C., Applegate, R., Moritz, B., Devereaux, T. P., Singh, R. R. 2011; 13
  • From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions SCIENCE He, R., Hashimoto, M., Karapetyan, H., Koralek, J. D., Hinton, J. P., Testaud, J. P., Nathan, V., Yoshida, Y., Yao, H., Tanaka, K., Meevasana, W., Moore, R. G., Lu, D. H., Mo, S., Ishikado, M., Eisaki, H., Hussain, Z., Devereaux, T. P., Kivelson, S. A., Orenstein, J., Kapitulnik, A., Shen, Z. 2011; 331 (6024): 1579-1583

    Abstract

    The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.

    View details for DOI 10.1126/science.1198415

    View details for Web of Science ID 000288754500048

    View details for PubMedID 21436447

  • Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides PHYSICAL REVIEW LETTERS Chen, C., Jia, C. J., Kemper, A. F., Singh, R. R., Devereaux, T. P. 2011; 106 (6)

    Abstract

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

    View details for DOI 10.1103/PhysRevLett.106.067002

    View details for Web of Science ID 000287196900011

    View details for PubMedID 21405486

  • Polaronic metal in lightly doped high-Tc cuprates Europhys. Lett. Mishchenko, A. S., Nagaosa, N., Shen, K. M., Shen, Z., Zhou, X. J., Devereaux, T. P. 2011; 95 (5)
  • Temporal response of nonequilibrium correlated electrons COMPUTER PHYSICS COMMUNICATIONS Moritz, B., Devereaux, T. P., Freericks, J. K. 2011; 182 (1): 109-111
  • Numerical studies of photon-based spectroscopies on high-T-c superconductors COMPUTER PHYSICS COMMUNICATIONS Chen, C., Moritz, B., Jia, C. J., Johnston, S., Sorini, A. P., Lee, L., Ko, K., Devereaux, T. P. 2011; 182 (1): 106-108
  • Pinpointing gap minima in Ba(Fe0.94Co0.06)(2)As-2 via band-structure calculations and electronic Raman scattering PHYSICAL REVIEW B Mazin, I. I., Devereaux, T. P., Analytis, J. G., Chu, J., Fisher, I. R., Muschler, B., Hackl, R. 2010; 82 (18)
  • ARPES studies of cuprate Fermiology: superconductivity, pseudogap and quasiparticle dynamics NEW JOURNAL OF PHYSICS Vishik, I. M., Lee, W. S., He, R., Hashimoto, M., Hussain, Z., Devereaux, T. P., Shen, Z. 2010; 12
  • High-pressure evolution of Fe2O3 electronic structure revealed by x-ray absorption PHYSICAL REVIEW B Wang, S., Mao, W. L., Sorini, A. P., Chen, C., Devereaux, T. P., Ding, Y., Xiao, Y., Chow, P., Hiraoka, N., Ishii, H., Cai, Y. Q., Kao, C. 2010; 82 (14)
  • Unraveling the Nature of Charge Excitations in La2CuO4 with Momentum-Resolved Cu K-Edge Resonant Inelastic X-Ray Scattering PHYSICAL REVIEW LETTERS Chen, C., Moritz, B., Vernay, F., Hancock, J. N., Johnston, S., Jia, C. J., Chabot-Couture, G., Greven, M., Elfimov, I., Sawatzky, G. A., Devereaux, T. P. 2010; 105 (17)

    Abstract

    The results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu K-edge resonant inelastic x-ray scattering (RIXS) from La₂CuO₄. The model includes electronic orbitals necessary to highlight the nonlocal Zhang-Rice singlet, charge transfer, and d-d excitations, as well as states with apical oxygen 2p(z) character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multiorbital character of RIXS profiles in the energy transfer range 1-6 eV.

    View details for DOI 10.1103/PhysRevLett.105.177401

    View details for Web of Science ID 000283054700017

    View details for PubMedID 21231077

  • Effect of disorder on the electronic Raman scattering in the superconducting state of iron pnictides PHYSICAL REVIEW B Boyd, G. R., Hirschfeld, P. J., Devereaux, T. P. 2010; 82 (13)
  • Orbital order and spontaneous orthorhombicity in iron pnictides PHYSICAL REVIEW B Chen, C., Maciejko, J., Sorini, A. P., Moritz, B., Singh, R. R., Devereaux, T. P. 2010; 82 (10)
  • Systematic study of electron-phonon coupling to oxygen modes across the cuprates PHYSICAL REVIEW B Johnston, S., Vernay, F., Moritz, B., Shen, Z., Nagaosa, N., Zaanen, J., Devereaux, T. P. 2010; 82 (6)
  • Insights on the cuprate high energy anomaly observed in ARPES International Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy Moritz, B., Johnston, S., Devereaux, T. P. ELSEVIER SCIENCE BV. 2010: 31–34
  • Density of states modulations from oxygen phonons in d-wave superconductors: Reconciling angle-resolved photoemission spectroscopy and scanning tunneling microscopy PHYSICAL REVIEW B Johnston, S., Devereaux, T. P. 2010; 81 (21)
  • Particle-hole symmetry breaking in the pseudogap state of Bi2201 NATURE PHYSICS Hashimoto, M., He, R., Tanaka, K., Testaud, J., Meevasana, W., Moore, R. G., Lu, D., Yao, H., Yoshida, Y., Eisaki, H., Devereaux, T. P., Hussain, Z., Shen, Z. 2010; 6 (6): 414-418

    View details for DOI 10.1038/NPHYS1632

    View details for Web of Science ID 000279014400011

  • Doping-Dependent Nodal Fermi Velocity of the High-Temperature Superconductor Bi2Sr2CaCu2O8+delta Revealed Using High-Resolution Angle-Resolved Photoemission Spectroscopy PHYSICAL REVIEW LETTERS Vishik, I. M., Lee, W. S., Schmitt, F., Moritz, B., Sasagawa, T., Uchida, S., Fujita, K., Ishida, S., Zhang, C., Devereaux, T. P., Shen, Z. X. 2010; 104 (20)

    Abstract

    The improved resolution of laser-based angle-resolved photoemission spectroscopy (ARPES) allows reliable access to fine structures in the spectrum. We present a systematic, doping-dependent study of a recently discovered low-energy kink in the nodal dispersion of Bi2Sr2CaCu2O(8+δ) (Bi-2212), which demonstrates the ubiquity and robustness of this kink in underdoped Bi-2212. The renormalization of the nodal velocity due to this kink becomes stronger with underdoping, revealing that the nodal Fermi velocity is nonuniversal, in contrast with assumed phenomenology. This is used together with laser ARPES measurements of the gap velocity (v2) to resolve discrepancies with thermal conductivity measurements.

    View details for DOI 10.1103/PhysRevLett.104.207002

    View details for Web of Science ID 000277945900042

    View details for PubMedID 20867053

  • Time-resolved photoemission of correlated electrons driven out of equilibrium PHYSICAL REVIEW B Moritz, B., Devereaux, T. P., Freericks, J. K. 2010; 81 (16)
  • Strong energy-momentum dispersion of phonon-dressed carriers in the lightly doped band insulator SrTiO3 NEW JOURNAL OF PHYSICS Meevasana, W., Zhou, X. J., Moritz, B., Chen, C., He, R. H., Fujimori, S., Lu, D. H., Mo, S., Moore, R. G., Baumberger, F., Devereaux, T. P., van der Marel, D., Nagaosa, N., Zaanen, J., Shen, Z. 2010; 12
  • Material and Doping Dependence of the Nodal and Antinodal Dispersion Renormalizations in Single- and Multilayer Cuprates ADVANCES IN CONDENSED MATTER PHYSICS Johnston, S., Lee, W. S., Chen, Y., Nowadnick, E. A., Moritz, B., Shen, Z., Devereaux, T. P. 2010
  • Finite-temperature spin dynamics and phase transitions in spin-orbital models PHYSICAL REVIEW B Chen, C., Moritz, B., van den Brink, J., Devereaux, T. P., Singh, R. R. 2009; 80 (18)
  • Band- and momentum-dependent electron dynamics in superconducting Ba(Fe1-xCox)(2)As-2 as seen via electronic Raman scattering PHYSICAL REVIEW B Muschler, B., PRESTEL, W., Hackl, R., Devereaux, T. P., Analytis, J. G., Chu, J., Fisher, I. R. 2009; 80 (18)
  • Collective d-wave exciton modes in the calculated Raman spectrum of Fe-based superconductors PHYSICAL REVIEW B Scalapino, D. J., Devereaux, T. P. 2009; 80 (14)
  • A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+delta NATURE PHYSICS Vishik, I. M., Nowadnick, E. A., Lee, W. S., Shen, Z. X., Moritz, B., Devereaux, T. P., Tanaka, K., Sasagawa, T., Fujii, T. 2009; 5 (10): 718-721

    View details for DOI 10.1038/NPHYS1375

    View details for Web of Science ID 000271185400010

  • Effect of strong correlations on the high energy anomaly in hole- and electron-doped high-T-c superconductors NEW JOURNAL OF PHYSICS Moritz, B., Schmitt, F., Meevasana, W., Johnston, S., Motoyama, E. M., Greven, M., Lu, D. H., Kim, C., Scalettar, R. T., Shen, Z., Devereaux, T. P. 2009; 11
  • Resonant inelastic x-ray scattering in electronically quasi-zero-dimensional CuB2O4 PHYSICAL REVIEW B Hancock, J. N., Chabot-Couture, G., Li, Y., Petrakovskii, G. A., Ishii, K., Jarrige, I., Mizuki, J., Devereaux, T. P., Greven, M. 2009; 80 (9)
  • Dependence of Band-Renormalization Effects on the Number of Copper Oxide Layers in Tl-Based Copper Oxide Superconductors Revealed by Angle-Resolved Photoemission Spectroscopy PHYSICAL REVIEW LETTERS Lee, W. S., Tanaka, K., Vishik, I. M., Lu, D. H., Moore, R. G., Eisaki, H., Iyo, A., Devereaux, T. P., Shen, Z. X. 2009; 103 (6)

    Abstract

    Here we report the first angle-resolved photoemission measurement on nearly optimally doped multilayer Tl-based superconducting cuprates (Tl-2212 and Tl-1223) and a comparison study to single-layer (Tl-2201) compound. A "kink" in the band dispersion is found in all three compounds but exhibits different momentum dependence for the single-layer and multilayer compounds, reminiscent to that of Bi-based cuprates. This layer number dependent renormalization effect strongly implies that the spin-resonance mode is unlikely to be responsible for the dramatic renormalization effect near the antinodal region.

    View details for DOI 10.1103/PhysRevLett.103.067003

    View details for Web of Science ID 000268809300056

    View details for PubMedID 19792598

  • Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2 PHYSICAL REVIEW LETTERS Chen, Y., Iyo, A., Yang, W., Ino, A., Arita, M., Johnston, S., Eisaki, H., Namatame, H., Taniguchi, M., Devereaux, T. P., Hussain, Z., Shen, Z. 2009; 103 (3)

    Abstract

    Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped high Tc superconductor Ba2Ca3Cu4O8F2 (F0234) revealed fine structure in the band dispersion, identifying the unconventional association of hole and electron doping with the inner and outer CuO2 layers, respectively. For the states originating from two inequivalent CuO2 layers, different energy scales are observed in dispersion kinks associated with the collective mode coupling, with the larger energy scale found in the electron (n-) doped state which also has stronger coupling strength. Given the earlier finding that the superconducting gap is substantially larger along the n-type Fermi surface, our observations connect the mode coupling energy and strength with magnitude of the pairing gap.

    View details for DOI 10.1103/PhysRevLett.103.036403

    View details for Web of Science ID 000268088300048

    View details for PubMedID 19659301

  • Evidence for weak electronic correlations in iron pnictides PHYSICAL REVIEW B Yang, W. L., Sorini, A. P., Chen, C., Moritz, B., Lee, W., Vernay, F., Olalde-Velasco, P., Denlinger, J. D., Delley, B., Chu, J., Analytis, J. G., Fisher, I. R., Ren, Z. A., Yang, J., Lu, W., Zhao, Z. X., van den Brink, J., Hussain, Z., Shen, Z., Devereaux, T. P. 2009; 80 (1)
  • Impact of an oxygen dopant in Bi2Sr2CaCu2O8+delta EPL Johnston, S., Vernay, F., Devereaux, T. P. 2009; 86 (3)
  • Probing the pairing symmetry of the iron pnictides with electronic Raman scattering PHYSICAL REVIEW B Boyd, G. R., Devereaux, T. P., Hirschfeld, P. J., Mishra, V., Scalapino, D. J. 2009; 79 (17)
  • High-resolution angle-resolved photoemission studies of quasiparticle dynamics in graphite PHYSICAL REVIEW B Leem, C. S., Kim, C., Park, S. R., Kim, M., Choi, H. J., Kim, C., Kim, B. J., Johnston, S., DEVEREAUX, T., Ohta, T., Bostwick, A., Rotenberg, E. 2009; 79 (12)
  • Photoemission kinks and phonons in cuprates NATURE Reznik, D., Sangiovanni, G., Gunnarsson, O., Devereaux, T. P. 2008; 455 (7213): E6-E7

    View details for DOI 10.1038/nature07364

    View details for Web of Science ID 000259639700056

    View details for PubMedID 18833217

  • Uncovering a pressure-tuned electronic transition in Bi1.98Sr2.06Y0.68Cu2O8+delta using Raman scattering and x-ray diffraction PHYSICAL REVIEW LETTERS Cuk, T., Struzhkin, V. V., Devereaux, T. P., Goncharov, A. F., Kendziora, C. A., Eisaki, H., Mao, H., Shen, Z. 2008; 100 (21)

    Abstract

    We report pressure-tuned Raman and x-ray diffraction data of Bi(1.98.)Sr(2.06)Y(0.68)Cu(2)O(8+delta) revealing a critical pressure at 21 GPa with anomalies in electronic Raman background, electron-phonon coupling lambda, spectral weight transfer, density dependent behavior of phonons and magnons, and a compressibility change in the c axis. For the first time in a cuprate, mobile charge carriers, lattice, and magnetism all show anomalies at a distinct critical pressure in the same experimental setting. Furthermore, the spectral changes suggest that the critical pressure at 21 GPa is related to the critical point at optimal doping.

    View details for DOI 10.1103/PhysRevLett.100.217003

    View details for Web of Science ID 000256585500042

    View details for PubMedID 18518627

  • Charge dynamics of doped holes in high T-c cuprate superconductors: A clue from optical conductivity PHYSICAL REVIEW LETTERS Mishchenko, A. S., Nagaosa, N., Shen, Z., De Filippis, G., Cataudella, V., Devereaux, T. P., Bernhard, C., Kim, K. W., Zaanen, J. 2008; 100 (16)

    Abstract

    The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the midinfrared band.

    View details for DOI 10.1103/PhysRevLett.100.166401

    View details for Web of Science ID 000255457600060

    View details for PubMedID 18518226

  • Superconductivity-induced self-energy evolution of the nodal electron of optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8+delta PHYSICAL REVIEW B Lee, W. S., Meevasana, W., Johnston, S., Lu, D. H., Vishik, I. M., Moore, R. G., Eisaki, H., Kaneko, N., Devereaux, T. P., Shen, Z. X. 2008; 77 (14)
  • CuK-edge resonant inelastic x-ray scattering in edge-sharing cuprates PHYSICAL REVIEW B Vernay, F., Moritz, B., Elfimov, I. S., Geck, J., Hawthorn, D., Devereaux, T. P., Sawatzky, G. A. 2008; 77 (10)
  • Polaronic Behavior and Electron-Phonon Coupling in High Temperature Cuprate Superconductors as Revealed from Angle-Resolved Photoemission Spectroscopy Treatise of High Temperature Superconductivity Zhou, X. J., Cuk, T., Devereaux, T. P., Nagaosa, N., Shen, Z. 2008
  • Polaron coherence condensation as the mechanism for colossal magnetoresistance in layered manganites PHYSICAL REVIEW B Mannella, N., Yang, W. L., Tanaka, K., Zhou, X. J., Zheng, H., Mitchell, J. F., Zaanen, J., Devereaux, T. P., Nagaosa, N., Hussain, Z., Shen, Z. 2007; 76 (23)
  • Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212 NATURE Lee, W. S., Vishik, I. M., Tanaka, K., Lu, D. H., Sasagawa, T., Nagaosa, N., Devereaux, T. P., Hussain, Z., Shen, Z. 2007; 450 (7166): 81-84

    Abstract

    The superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (T(c)) in conventional BCS superconductors. In underdoped high-T(c) superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above T(c) (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above T(c) is one of the central questions in high-T(c) research. Although some experimental evidence suggests that the two gaps are distinct, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu-O bond direction (nodal direction), we found a gap that opens at T(c) and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu-O bond direction (antinodal region) measured in earlier experiments.

    View details for DOI 10.1038/nature06219

    View details for Web of Science ID 000250585800040

    View details for PubMedID 17972881

  • Hierarchy of multiple many-body interaction scales in high-temperature superconductors PHYSICAL REVIEW B Meevasana, W., Zhou, X. J., Sahrakorpi, S., Lee, W. S., Yang, W. L., Tanaka, K., Mannella, N., Yoshida, T., Lu, D. H., Chen, Y. L., He, R. H., Lin, H., Komiya, S., Ando, Y., Zhou, F., Ti, W. X., Xiong, J. W., Zhao, Z. X., Sasagawa, T., Kakeshita, T., Fujita, K., Uchida, S., Eisaki, H., Fujimori, A., Hussain, Z., Markiewicz, R. S., Bansil, A., Nagaosa, N., Zaanen, J., Devereaux, T. P., Shen, Z. 2007; 75 (17)
  • Aspects of electron-phonon self-energy revealed from angle-resolved photoemission spectroscopy PHYSICAL REVIEW B Lee, W. S., Johnston, S., Devereaux, T. P., Shen, Z. 2007; 75 (19)
  • Raman scattering for triangular lattices spin-1/2 Heisenberg antiferromagnets International Conference on Highly Frustrated Magnetism Vernay, F., Devereaux, T. P., Gingras, M. J. IOP PUBLISHING LTD. 2007
  • Momentum-dependent light scattering in insulating cuprates PHYSICAL REVIEW B Vernay, F. H., Gingras, M. J., Devereaux, T. P. 2007; 75 (2)
  • Band Renormalization Effect in Bi2Sr2Ca2Cu3O10+δ High Tc Superconductors and Related Transition Metal Oxides Lee, W. S., Lu, D. H., Yang, W. L., Cuk, T., Shen, K. M., Zhou, X. J., Meevasana, W., Lin, C. T., Shimoyama J.-i., Devereaux, T. P., Shen, Z. X. Springer Berlin Heidelberg. 2007: 227–236
  • Inelastic light scattering from correlated electrons REVIEWS OF MODERN PHYSICS Devereaux, T. P., Hackl, R. 2007; 79 (1): 175-233
  • Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212 SCIENCE Tanaka, K., Lee, W. S., Lu, D. H., Fujimori, A., Fujii, T., Risdiana, Terasaki, I., Scalapino, D. J., Devereaux, T. P., Hussain, Z., Shen, Z. 2006; 314 (5807): 1910-1913

    Abstract

    We used angle-resolved photoemission spectroscopy applied to deeply underdoped cuprate superconductors Bi2Sr2Ca(1-x)YxCu2O8 (Bi2212) to reveal the presence of two distinct energy gaps exhibiting different doping dependence. One gap, associated with the antinodal region where no coherent peak is observed, increased with underdoping, a behavior known for more than a decade and considered as the general gap behavior in the underdoped regime. The other gap, associated with the near-nodal regime where a coherent peak in the spectrum can be observed, did not increase with less doping, a behavior not previously observed in the single particle spectra. We propose a two-gap scenario in momentum space that is consistent with other experiments and may contain important information on the mechanism of high-transition temperature superconductivity.

    View details for DOI 10.1126/science.1133411

    View details for Web of Science ID 000242996800043

    View details for PubMedID 17114172

  • Anomalous Fermi-surface dependent pairing in a self-doped high-T-c superconductor PHYSICAL REVIEW LETTERS Chen, Y., Iyo, A., Yang, W., Zhou, X., Lu, D., Eisaki, H., Devereaux, T. P., Hussain, Z., Shen, Z. 2006; 97 (23)

    Abstract

    We report the discovery of a self-doped multilayer high Tc superconductor Ba2Ca3Cu4O8F2 (F0234) which contains distinctly different superconducting gap magnitudes along its two Fermi-surface sheets. While formal valence counting would imply this material to be an undoped insulator, it is a self-doped superconductor with a Tc of 60 K, possessing simultaneously both electron- and hole-doped Fermi-surface sheets. Intriguingly, the Fermi-surface sheet characterized by the much larger gap is the electron-doped one, which has a shape disfavoring two electronic features considered to be important for the pairing mechanism: the van Hove singularity and the antiferromagnetic (pi/a, pi/a) scattering.

    View details for DOI 10.1103/PhysRevLett.97.236401

    View details for Web of Science ID 000242708900037

    View details for PubMedID 17280217

  • Calculation of overdamped c-axis charge dynamics and the coupling to polar phonons in cuprate superconductors PHYSICAL REVIEW B Meevasana, W., Devereaux, T. P., Nagaosa, N., Shen, Z., Zaanen, J. 2006; 74 (17)
  • Effects of pairing potential scattering on Fourier-transformed inelastic tunneling spectra of high-T-c cuprate superconductors with bosonic modes PHYSICAL REVIEW LETTERS Zhu, J., McElroy, K., Lee, J., Devereaux, T. P., Si, Q., Davis, J. C., Balatsky, A. V. 2006; 97 (17)

    Abstract

    Recent scanning tunneling microscopy (STM) experimentally observed strong gap inhomogeneity in Bi2Sr2CaCu2O(8+delta) (BSCCO). We argue that disorder in the pair potential underlies the gap inhomogeneity, and investigate its role in the Fourier-transformed inelastic tunneling spectra as revealed in the STM. We find that the random pair potential induces unique q-space patterns in the local density of states (LDOS) of a d-wave superconductor. We consider the effects of electron coupling to various bosonic modes and find the pattern of LDOS modulation due to coupling to the B(1g) phonon mode to be consistent with the one observed in the inelastic electron tunnneling STM experiment in BSCCO. These results suggest strong electron-lattice coupling as an essential part of the superconducting state in high-Tc materials.

    View details for DOI 10.1103/PhysRevLett.97.177001

    View details for Web of Science ID 000241586800053

    View details for PubMedID 17155496

  • Sum rules for inelastic light scattering in the Hubbard model International Conference on Strongly Correlated Electron Systems (SCES 05) Freericks, J. K., Devereaux, T. P. ELSEVIER SCIENCE BV. 2006: 650–653
  • Doping dependence of the coupling of electrons to bosonic modes in the single-layer high-temperature Bi2Sr2CuO6 superconductor PHYSICAL REVIEW LETTERS Meevasana, W., Ingle, N. J., Lu, D. H., Shi, J. R., Baumberger, F., Shen, K. M., Lee, W. S., Cuk, T., Eisaki, H., Devereaux, T. P., Nagaosa, N., Zaanen, J., Shen, Z. X. 2006; 96 (15)

    Abstract

    A recent highlight in the study of high-T(c) superconductors is the observation of band renormalization or self-energy effects on the quasiparticles. This is seen in the form of kinks in the quasiparticle dispersions as measured by photoemission and interpreted as signatures of collective bosonic modes coupling to the electrons. Here we compare for the first time the self-energies in an optimally doped and strongly overdoped, nonsuperconducting single-layer Bi-cuprate (Bi2Sr2CuO6). In addition to the appearance of a strong overall weakening, we also find that the weight of the self-energy in the overdoped system shifts to higher energies. We present evidence that this is related to a change in the coupling to c-axis phonons due to the rapid change of the c-axis screening in this doping range.

    View details for DOI 10.1103/PhysRevLett.96.157003

    View details for Web of Science ID 000236969700057

    View details for PubMedID 16712188

  • Resonance mode in B-1g Raman scattering: A way to distinguish between spin-fluctuation and phonon-mediated d-wave superconductivity PHYSICAL REVIEW B Chubukov, A. V., Devereaux, T. P., Klein, M. V. 2006; 73 (9)
  • Resonant enhancement of electronic Raman scattering 7th International Conference on Spectroscopies in Novel Superconductors (SNS 04) Shvaika, A. M., Vorobyov, O., Freericks, J. K., Devereaux, T. P. PERGAMON-ELSEVIER SCIENCE LTD. 2006: 336–39
  • Fourier-transformed local density of states and tunneling into a d-wave superconductor with bosonic modes PHYSICAL REVIEW B Zhu, J. X., Balatsky, A. V., Devereaux, T. P., Si, Q. M., Lee, J., McElroy, K., Davis, J. C. 2006; 73 (1)
  • Nodal quasiparticle in pseudogapped colossal magnetoresistive manganites NATURE Mannella, N., Yang, W. L., Zhou, X. J., Zheng, H., Mitchell, J. F., Zaanen, J., Devereaux, T. P., Nagaosa, N., Hussain, Z., Shen, Z. X. 2005; 438 (7067): 474-478

    Abstract

    A characteristic feature of the copper oxide high-temperature superconductors is the dichotomy between the electronic excitations along the nodal (diagonal) and antinodal (parallel to the Cu-O bonds) directions in momentum space, generally assumed to be linked to the 'd-wave' symmetry of the superconducting state. Angle-resolved photoemission measurements in the superconducting state have revealed a quasiparticle spectrum with a d-wave gap structure that exhibits a maximum along the antinodal direction and vanishes along the nodal direction. Subsequent measurements have shown that, at low doping levels, this gap structure persists even in the high-temperature metallic state, although the nodal points of the superconducting state spread out in finite 'Fermi arcs'. This is the so-called pseudogap phase, and it has been assumed that it is closely linked to the superconducting state, either by assigning it to fluctuating superconductivity or by invoking orders which are natural competitors of d-wave superconductors. Here we report experimental evidence that a very similar pseudogap state with a nodal-antinodal dichotomous character exists in a system that is markedly different from a superconductor: the ferromagnetic metallic groundstate of the colossal magnetoresistive bilayer manganite La1.2Sr1.8Mn2O7. Our findings therefore cast doubt on the assumption that the pseudogap state in the copper oxides and the nodal-antinodal dichotomy are hallmarks of the superconductivity state.

    View details for DOI 10.1038/nature04273

    View details for Web of Science ID 000233458200044

    View details for PubMedID 16306987

  • Optical sum rules that relate to the potential energy of strongly correlated systems PHYSICAL REVIEW LETTERS Freericks, J. K., Devereaux, T. P., Moraghebi, M., COOPER, S. L. 2005; 94 (21)

    Abstract

    A class of sum rules for inelastic light scattering is developed. We show that the first moment of the nonresonant response provides information about the potential energy in strongly correlated systems. The polarization dependence of the sum rules provides information about the electronic excitations in different regions of the Brillouin zone. We determine the sum rule for the Falicov-Kimball model, which possesses a metal-insulator transition, and compare our results to the light scattering experiments in SmB(6).

    View details for DOI 10.1103/PhysRevLett.94.216401

    View details for Web of Science ID 000229543900032

    View details for PubMedID 16090335

  • Resonant electronic Raman scattering near a quantum critical point International Conference on Strongly Correlated Electron Systems (SCES 04) Shvaika, A. M., Vorobyov, O., Freericks, J. K., Devereaux, T. P. ELSEVIER SCIENCE BV. 2005: 705–707
  • A review of electron-phonon coupling seen in the high-T-c superconductors by angle-resolved photoemission studies (ARPES) PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS Cuk, T., Lu, D. H., Zhou, X. J., Shen, Z. X., Devereaux, T. P., Nagaosa, N. 2005; 242 (1): 11-29
  • Electronic Raman scattering in correlated materials: A treatment of nonresonant, mixed, and resonant scattering using dynamical mean-field theory PHYSICAL REVIEW B Shvaika, A. M., Vorobyov, O., Freericks, J. K., Devereaux, T. P. 2005; 71 (4)
  • Interplay between the pseudogap and superconductivity in underdoped HgBa2CuO4+delta single crystals PHYSICAL REVIEW B Gallais, Y., Sacuto, A., Devereaux, T. P., Colson, D. 2005; 71 (1)
  • Review of Superconductivity in Complex Systems. Structure and Bonding, 114 J. Am. Chem. Soc. Devereaux, T. P. 2005; 128 (23): 7699

    View details for DOI 10.1021/ja059826x

  • Resonant enhancement of inelastic light scattering in strongly correlated materials PHYSICAL REVIEW LETTERS Shvaika, A. M., Vorobyov, O., Freericks, J. K., Devereaux, T. P. 2004; 93 (13)

    Abstract

    We use dynamical mean field theory to find an exact solution for inelastic light scattering in strongly correlated materials such as those near a quantum-critical metal-insulator transition. We evaluate the results for q=0 (Raman) scattering and find that resonant effects can be quite large, and yield a double resonance, a significant enhancement of nonresonant scattering peaks, a joint resonance of both peaks when the incident photon frequency is on the order of U, and the appearance of an isosbestic point in all symmetry channels for an intermediate range of incident photon frequencies.

    View details for DOI 10.1103/PhysRevLett.93.137402

    View details for Web of Science ID 000224131400074

    View details for PubMedID 15524756

  • Coupling of the B-1g phonon to the antinodal electronic states of Bi2Sr2Ca0.92Y0.08Cu2O8+delta PHYSICAL REVIEW LETTERS Cuk, T., Baumberger, F., Lu, D. H., Ingle, N., Zhou, X. J., Eisaki, H., Kaneko, N., Hussain, Z., Devereaux, T. P., Nagaosa, N., Shen, Z. X. 2004; 93 (11)

    Abstract

    Angle-resolved photoemission spectroscopy on optimally doped Bi(2)Sr(2)Ca(0.92)Y(0.08)Cu(2)O(8+delta) uncovers a coupling of the electronic bands to a 40 meV mode in an extended k-space region away from the nodal direction, leading to a new interpretation of the strong renormalization of the electronic structure seen in Bi2212. Phenomenological agreements with neutron and Raman experiments suggest that this mode is the B(1g) oxygen bond-buckling phonon. A theoretical calculation based on this assignment reproduces the electronic renormalization seen in the data.

    View details for DOI 10.1103/PhysRevLett.93.117003

    View details for Web of Science ID 000223794400050

    View details for PubMedID 15447370

  • Anisotropic electron-phonon interaction in the cuprates PHYSICAL REVIEW LETTERS Devereaux, T. P., Cuk, T., Shen, Z. X., Nagaosa, N. 2004; 93 (11)

    Abstract

    We explore manifestations of electron-phonon coupling on the electron spectral function for two phonon modes in the cuprates exhibiting strong renormalizations with temperature and doping. Applying simple symmetry considerations and kinematic constraints, we find that the out-of-plane, out-of-phase O buckling mode (B(1g)) involves small momentum transfers and couples strongly to electronic states near the antinode while the in-plane Cu-O breathing modes involve large momentum transfers and couples strongly to nodal electronic states. Band renormalization effects are found to be strongest in the superconducting state near the antinode, in full agreement with angle-resolved photoemission spectroscopy data.

    View details for DOI 10.1103/PhysRevLett.93.117004

    View details for Web of Science ID 000223794400051

    View details for PubMedID 15447371

  • Critical current peaks at 3B(Phi) in superconductors with columnar defects: Recrystallizing the interstitial glass PHYSICAL REVIEW LETTERS Gallamore, M. E., McCormack, G. E., Devereaux, T. P. 2004; 93 (6)

    Abstract

    The role of commensurability and the interplay of correlated disorder and interactions on vortex dynamics in the presence of columnar pins is studied via molecular dynamics simulations. Simulations of dynamics reveal substantial caging effects and a nonmonotonic dependence of the critical current with enhancements near integer values of the matching field Bphi and 3Bphi in agreement with experiments on the cuprates. We find qualitative differences in the phase diagram for small and large values of the matching field.

    View details for DOI 10.1103/PhysRevLett.93.067002

    View details for Web of Science ID 000223138200043

    View details for PubMedID 15323655

  • Optical symmetries and anisotropic transport in high-T-c superconductors PHYSICAL REVIEW B Devereaux, T. P. 2003; 68 (9)
  • Inelastic x-ray scattering as a probe of electronic correlations PHYSICAL REVIEW B Devereaux, T. P., McCormack, G. E., Freericks, J. K. 2003; 68 (7)
  • Nonresonant inelastic light scattering in the Hubbard model PHYSICAL REVIEW B Freericks, J. K., Devereaux, T. P., Bulla, R., Pruschke, T. 2003; 67 (15)
  • Inelastic X-ray scattering in correlated Mott insulators PHYSICAL REVIEW LETTERS Devereaux, T. P., McCormack, G. E., Freericks, J. K. 2003; 90 (6)

    Abstract

    We calculate the inelastic light scattering from x rays, which allows the photon to transfer both energy and momentum to the strongly correlated charge excitations. We find that the charge-transfer peak and the low-energy peak both broaden and disperse through the Brillouin zone similar to what is seen in experiments in materials such as Ca2CuO2Cl2.

    View details for DOI 10.1103/PhysRevLett.90.067402

    View details for Web of Science ID 000181015900050

    View details for PubMedID 12633327

  • Inelastic light scattering and the correlated metal-insulator transition International Conference on Strongly Correlated Electron Systems (SCES 2002) Freericks, J. K., Devereaux, T. P., Bulla, R. WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO. 2003: 737–48
  • Inelastic light scattering and the correlated metal-insulator transition NATO Advanced Research Workshop on Concepts in Electron Correlation Freericks, J. K., Devereaux, T. P., Bulla, R. SPRINGER. 2003: 115–122
  • Observation of an unconventional metal-insulator transition in overdoped CuO2 compounds PHYSICAL REVIEW LETTERS Venturini, F., Opel, M., Devereaux, T. P., Freericks, J. K., Tutto, I., Revaz, B., Walker, E., Berger, H., Forro, L., Hackl, R. 2002; 89 (10)

    Abstract

    The electron dynamics in the normal state of Bi(2)Sr(2)CaCu(2)O(8+delta) is studied by inelastic light scattering over a wide range of doping. A strong anisotropy of the electron relaxation is found which cannot be explained by single-particle properties alone. The results strongly indicate the presence of an unconventional quantum-critical metal-insulator transition where "hot" (antinodal) quasiparticles become insulating while "cold" (nodal) quasiparticles remain metallic. A phenomenology is developed which allows a quantitative understanding of the Raman results and provides a scenario which links single- and many-particle properties.

    View details for DOI 10.1103/PhysRevLett.89.107003

    View details for Web of Science ID 000177582600043

    View details for PubMedID 12225217

  • Exact theory for electronic Raman scattering of correlated materials in infinite dimensions PHYSICAL REVIEW B Freericks, J. K., Devereaux, T. P., Bulla, R. 2001; 64 (23)
  • B-1g Raman scattering through a quantum critical point 12th School on Phase Transitions and Critical Phenomena to the Scientific Community Freericks, J. K., Devereaux, T. P., Bulla, R. WYDAWNICTWO UNIWERSYTETU JAGIELLONSKIEGO. 2001: 3219–31
  • Raman scattering through a metal-insulator transition PHYSICAL REVIEW B Freericks, J. K., Devereaux, T. P. 2001; 64 (12)
  • Non-Resonant Raman Scattering Through a Metal-Insulator Transition: An Exact Analysis of the Falicov-Kimball Model Proceedings of the Workshop on Soft Matter Theory Freericks, J. K., Devereaux, T. P. 2001: 149–60
  • Collective spin fluctuation mode and Raman scattering in superconducting cuprates PHYSICAL REVIEW B Venturini, F., Michelucci, U., Devereaux, T. P., Kampf, A. P. 2000; 62 (22): 15204-15207
  • A consistent picture of electronic Raman scattering and infrared conductivity in the cuprates International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors VI Devereaux, T. P., Kampf, A. P. ELSEVIER SCIENCE BV. 2000: 2229–2230
  • The role of splayed disorder and channel flow on the dynamics of driven 3D vortices International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors VI Palmer, C. M., Devereaux, T. P. ELSEVIER SCIENCE BV. 2000: 1219–1220
  • Unconventional electronic Raman spectra of borocarbide superconductors International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors VI Yang, I. S., Klein, M. V., Devereaux, T. P., Fisher, I. R., Canfield, P. C. ELSEVIER SCIENCE BV. 2000: 2259–2260
  • Collective modes and electronic Raman scattering in the cuprates International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors VI Venturini, F., Michelucci, U., Devereaux, T. P., Kampf, A. P. ELSEVIER SCIENCE BV. 2000: 2265–2266
  • Contribution to the quasiparticle inelastic lifetime from paramagnons in disordered superconductors PHYSICAL REVIEW B Devereaux, T. P. 2000; 62 (1): 682-685
  • Consistent picture of electronic Raman scattering and infrared conductivity in the cuprates PHYSICAL REVIEW B Devereaux, T. P., Kampf, A. P. 2000; 61 (2): 1490-1494
  • Physical origin of the buckling in CuO2: Electron-phonon coupling and Raman spectra PHYSICAL REVIEW B Opel, M., Hackl, R., Devereaux, T. P., Virosztek, A., Zawadowski, A. 1999; 60 (13): 9836-9844
  • Neutron scattering and the B-1g phonon in the cuprates PHYSICAL REVIEW B Devereaux, T. P., Virosztek, A., Zawadowski, A. 1999; 59 (22): 14618-14623
  • Theory of electronic Raman scattering in nearly antiferromagnetic Fermi liquids PHYSICAL REVIEW B Devereaux, T. P., Kampf, A. P. 1999; 59 (9): 6411-6420
  • Neutron Scattering and the B1g Phonon in the Cuprates Phys. Review B Devereaux, T. P., Virosztek, A., Zawadowski, A. 1999; 59: 14618
  • Theory of Raman Scattering in a Nearly Antiferromagnetic Fermi Liquid Phys. Review B Devereaux, T. P., Kampf, A. P. 1999: 6411

    View details for DOI 10.1103/PhysRevB.59.6411

  • Electronic Raman scattering in nearly antiferromagnetic Fermi liquids International Conference on Spectroscopies in Novel Superconductors (SNS'97) Devereaux, T. P., Kampf, A. P. PERGAMON-ELSEVIER SCIENCE LTD. 1998: 1972–75
  • Evidence for magnetic pseudoscaling in overdoped La2-xSrxCuO4 PHYSICAL REVIEW B Naeini, J. G., Chen, X. K., Hewitt, K. C., Irwin, J. C., Devereaux, T. P., Okuya, M., Kimura, T., Kishio, K. 1998; 57 (18): R11077-R11080
  • Enhanced electron-phonon coupling and its irrelevance to high T-c superconductivity SOLID STATE COMMUNICATIONS Devereaux, T. P., Virosztek, A., Zawadowski, A., Opel, M., Muller, P. F., Hoffmann, C., Philipp, R., Nemetschek, R., Hackl, R., Erb, A., Walker, E., Berger, H., Forro, L. 1998; 108 (7): 407-411
  • Raman Scattering in a Nearly Antiferromagnetic Fermi Liquid Journal of Physics and Chemistry Solids Devereaux, T., Kampf, A. P. 1998; 59 (10-12): 1972-1975
  • Extended impurity potential in a d(x2-y2) superconductor PHYSICAL REVIEW B Kampf, A. P., Devereaux, T. P. 1997; 56 (5): 2360-2363
  • Raman scattering in cuprate superconductors INTERNATIONAL JOURNAL OF MODERN PHYSICS B Devereaux, T. P., Kampf, A. P. 1997; 11 (18): 2093-2118
  • Superconducting gap anisotropy vs doping level in high-T-c cuprates - Comment PHYSICAL REVIEW LETTERS Hewitt, K. C., Devereaux, T. P., Chen, X. K., Wang, X. Z., Naeini, J. G., Curzon, A. E., Irwin, J. C., Martin, A. 1997; 78 (25): 4891-4891
  • Comment on "Superconducting Gap Anisotropy vs. Doping Level in High-Tc Cuprates Phys. Rev. Lett. Hewitt, K. C., Devereaux, T. P., Chen, X. K., Wang, X., Naeini, J. G., Curzon, A. E., Irwin, J. C. 1997; 78: 4891
  • Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing (vol 51, pg 16 336, 1995) PHYSICAL REVIEW B Devereaux, T. P., Einzel, D. 1996; 54 (21): 15547-15547
  • Multiband electronic Raman scattering in bilayer superconductors PHYSICAL REVIEW B Devereaux, T. P., Virosztek, A., Zawadowski, A. 1996; 54 (17): 12523-12534
  • Magnetic pair breaking in disordered superconducting films PHYSICAL REVIEW B Devereaux, T. P., Belitz, D. 1996; 53 (1): 359-364
  • Role of symmetry in Raman spectroscopy of unconventional superconductors Conference on Spectroscopic Studies of Superconductors Devereaux, T. P. SPIE - INT SOC OPTICAL ENGINEERING. 1996: 230–241
  • Phase diagram for splay glass superconductivity PHYSICAL REVIEW LETTERS Devereaux, T. P., Scalettar, R. T., Zimanyi, G. T., Moon, K., Loh, E. 1995; 75 (26): 4768-4771
  • Study of k-dependent electronic properties in cuprate superconductors using Raman spectroscopy Conference on Spectroscopies in Novel Superconductors Stadlober, B., Krug, G., Nemetschek, R., Opel, M., Hackl, R., Einzel, D., Schuster, C., Devereaux, T. P., Forro, L., Cobb, J. L., Markert, J. T., Neumeier, J. J. PERGAMON-ELSEVIER SCIENCE LTD. 1995: 1841–42
  • Raman scattering in disordered unconventional superconductors Conference on Spectroscopies in Novel Superconductors Devereaux, T. P. PERGAMON-ELSEVIER SCIENCE LTD. 1995: 1711–12
  • ELECTRONIC RAMAN-SCATTERING AS A PROBE OF ANISOTROPIC ELECTRON PAIRING University-of-Miami Workshop on High-Temperature Superconductivity - Physical Properties and Mechanisms Devereaux, T. P. SPRINGER/PLENUM PUBLISHERS. 1995: 421–24
  • ELECTRONIC RAMAN-SCATTERING IN SUPERCONDUCTORS AS A PROBE OF ANISOTROPIC ELECTRON PAIRING PHYSICAL REVIEW B Devereaux, T. P., Einzel, D. 1995; 51 (22): 16336-16357
  • THEORY OF ELECTRONIC RAMAN-SCATTERING IN DISORDERED UNCONVENTIONAL SUPERCONDUCTORS PHYSICAL REVIEW LETTERS Devereaux, T. P. 1995; 74 (21): 4313-4316
  • EFFECT OF COMPETITION BETWEEN POINT AND COLUMNAR DISORDER ON THE BEHAVIOR OF FLUX LINES IN (1+1) DIMENSIONS (VOL 50, PG 13625, 1994) PHYSICAL REVIEW B Devereaux, T. P., Scalettar, R. T., Zimanyi, G. T. 1995; 51 (13): 8689-8689
  • CHARGE-TRANSFER FLUCTUATION, D-WAVE SUPERCONDUCTIVITY, AND THE B-1G RAMAN PHONON IN CUPRATES PHYSICAL REVIEW B Devereaux, T. P., Virosztek, A., Zawadowski, A. 1995; 51 (1): 505-514
  • ELECTRONIC RAMAN-SCATTERING IN HIGH-T-C SUPERCONDUCTORS PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS Devereaux, T. P., Einzel, D., Hackl, R., Krug, G., Nemetschek, R., Stadlober, B. 1994; 235: 57-58
  • EFFECT OF COMPETITION BETWEEN POINT AND COLUMNAR DISORDER ON THE BEHAVIOR OF FLUX LINES IN (1+1)-DIMENSIONS PHYSICAL REVIEW B Devereaux, T. P., Scalettar, R. T., Zimanyi, G. T. 1994; 50 (18): 13625-13631
  • SYMMETRY DEPENDENCE OF PHONON LINE-SHAPES IN SUPERCONDUCTORS WITH ANISOTROPIC GAPS PHYSICAL REVIEW B Devereaux, T. P. 1994; 50 (14): 10287-10293
  • ELECTRONIC RAMAN-SCATTERING IN HIGH-T(C) SUPERCONDUCTORS - A PROBE OF D(X2-Y2) PAIRING - REPLY PHYSICAL REVIEW LETTERS Devereaux, T. P., Einzel, D., Stadlober, B., Hackl, R. 1994; 72 (20): 3291-3291
  • GAUGE-INVARIANT RESPONSE OF A SUPERCONDUCTOR WITH DX(2)-Y(2) SYMMETRY - APPLICATION TO ELECTRONIC RAMAN-SCATTERING 20th International Conference on Low Temperature Physics Devereaux, T. P., Einzel, D. ELSEVIER SCIENCE BV. 1994: 1531–1532
  • ELECTRONIC RAMAN-SCATTERING IN HIGH-T(C) SUPERCONDUCTORS - A PROBE OF DX2-Y2 PAIRING PHYSICAL REVIEW LETTERS Devereaux, T. P., Einzel, D., Stadlober, B., Hackl, R., LEACH, D. H., Neumeier, J. J. 1994; 72 (3): 396-399
  • Devereaux et al. Reply Physical Review Letters Devereaux, T. P., Einzel, D., Stadlober, B., Hackl, R. 1994; 72 (20): 3291
  • Electronic Investigation of the Pairing Symmetry in High-Tc Superconductors by Electronic Raman Scatteringattering Proceedings of the Fourteenth International Conference on Raman Spectroscopy Hackl, R., Stadlober, B., Nemetschek, R., Krug, G., Einzel, D., Devereaux, T. P., Muller, P., Neumeier, J. J., Winzer, K. 1994: 327
  • Investigation of the pairing symmetry in high-T-c superconductors by electronic Raman scattering 14th International Conference on Raman Spectroscopy Hack, R., Stadlober, B., Nemetschek, R., Krug, G., Einzel, D., Devereaux, T. P., Muller, P., Neumeier, J. J., Winzer, K. JOHN WILEY & SONS LTD. 1994: 326–327
  • MULTIPLE ANDREEV SCATTERING IN SUPERCONDUCTOR NORMAL-METAL SUPERCONDUCTOR JUNCTIONS AS A TEST FOR ANISOTROPIC ELECTRON PAIRING PHYSICAL REVIEW B Devereaux, T. P., Fulde, P. 1993; 47 (21): 14638-14641
  • THEORY FOR THE EFFECTS OF IMPURITIES ON THE RAMAN-SPECTRA OF SUPERCONDUCTORS .2. TEMPERATURE-DEPENDENCE AND INFLUENCE OF FINAL-STATE INTERACTIONS PHYSICAL REVIEW B Devereaux, T. P. 1993; 47 (9): 5230-5238
  • NUCLEAR-SPIN RELAXATION IN STRONGLY DISORDERED SUPERCONDUCTORS ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER Devereaux, T. P. 1993; 90 (1): 65-68
  • THEORY FOR THE EFFECTS OF IMPURITIES ON THE RAMAN-SPECTRA OF SUPERCONDUCTORS PHYSICAL REVIEW B Devereaux, T. P. 1992; 45 (22): 12965-12975
  • QUASI-PARTICLE INELASTIC LIFETIMES IN DISORDERED SUPERCONDUCTING FILMS PHYSICAL REVIEW B Devereaux, T. P., Belitz, D. 1991; 44 (9): 4587-4600
  • POWER-LAW TEMPERATURE-DEPENDENCE OF THE INELASTIC-SCATTERING RATE IN DISORDERED SUPERCONDUCTORS PHYSICAL REVIEW B Devereaux, T. P., Belitz, D. 1991; 43 (4): 3736-3739
  • Quasiparticle Lifetimes in Disordered Superconducting Film Phys. Review B Devereaux, T. P., Belitz, D. 1991; 44 (9): 4587-4600

    View details for DOI 10.1103/PhysRevB.44.4587

  • DISORDER ENHANCEMENT OF QUASIPARTICLE LIFETIMES IN SUPERCONDUCTORS JOURNAL OF LOW TEMPERATURE PHYSICS Devereaux, T. P., Belitz, D. 1989; 77 (5-6): 319-326
  • ELECTROMAGNETIC RESPONSE OF DISORDERED SUPERCONDUCTORS PHYSICAL REVIEW B Belitz, D., DESOUZAMACHADO, S., Devereaux, T. P., Hoard, D. W. 1989; 39 (4): 2072-2083