Bio


Dr. Wan-Jin Lu is a Research Scientist in Dr. Phil Beachy's lab. Wan-Jin grew up in Taiwan, obtained her B.S. in Zoology at National Taiwan University and completed her PhD in Genetics and Development at UT Southwestern in the lab of Dr. John Abrams. Her Ph.D. research involved the identification of the evolutionary conserved function of the tumor suppressor gene p53 that ensures the quality control of germ cells. She then moved to the Bay Area, where she was a Damon Runyon Postdoctoral Fellow in the Institute of Stem Cell Biology and Regenerative Medicine in the Beachy lab. Her work currently focuses on understanding the function of Hedgehog signaling in taste receptor cell homeostasis and delineating the mechanisms of taste receptor regeneration after chemotherapy-induced loss.

Since 2017, she has been collaborating with Tabula Muris And Tabula Sapiens Consortium to investigate taste receptor stem cell renewal and regeneration in the Beachy lab. Her work has received funding support from California Institute of Regenerative Medicine (CIRM), Thomas and Stacey Siebel Foundation, and NIH (R21 and R01).

Honors & Awards


  • Siebel Scholar, Thomas and Stacey Siebel Foundation (2015-2016)
  • Postdoctoral Scholar Award, California Institute of Regenerative Medicine (CIRM) (2014-2015)
  • Postdoctoral Scholar Award, Damon Runyon Cancer Research Foundation (2011-2014)

Education & Certifications


  • Ph.D., UT Southwestern, Genetics and Development (2010)
  • B.S., National Taiwan University, Zoology (2001)

All Publications


  • Distinct p53 isoforms code for opposing transcriptional outcomes. Developmental cell Wylie, A., Jones, A. E., Das, S., Lu, W., Abrams, J. M. 2022

    Abstract

    p53 genes are conserved transcriptional activators that respond to stress. These proteins can also downregulate genes, but the mechanisms are not understood and are generally assumed to be indirect. Here, we investigate synthetic and native cis-regulatory elements in Drosophila to examine opposing features of p53-mediated transcriptional control invivo. We show that transcriptional repression by p53 operates continuously through canonical DNA binding sites that confer p53-dependent transactivation at earlier developmental stages. p53 transrepression is correlated with local H3K9me3 chromatin marks and occurs without the need for stress or Chk2. In sufficiency tests, two p53 isoforms qualify as transrepressors and a third qualifies as a transcriptional activator. Targeted isoform-specific knockouts dissociate these opposing transcriptional activities, highlighting features that are dispensable for transactivation but critical for repression and for proper germ cell formation. Together, these results demonstrate that certain p53 isoforms function as constitutive tissue-specific repressors, raising important implications for tumor suppression by the human counterpart.

    View details for DOI 10.1016/j.devcel.2022.06.015

    View details for PubMedID 35820415

  • The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science (New York, N.Y.) Jones, R. C., Karkanias, J., Krasnow, M. A., Pisco, A. O., Quake, S. R., Salzman, J., Yosef, N., Bulthaup, B., Brown, P., Harper, W., Hemenez, M., Ponnusamy, R., Salehi, A., Sanagavarapu, B. A., Spallino, E., Aaron, K. A., Concepcion, W., Gardner, J. M., Kelly, B., Neidlinger, N., Wang, Z., Crasta, S., Kolluru, S., Morri, M., Pisco, A. O., Tan, S. Y., Travaglini, K. J., Xu, C., Alcántara-Hernández, M., Almanzar, N., Antony, J., Beyersdorf, B., Burhan, D., Calcuttawala, K., Carter, M. M., Chan, C. K., Chang, C. A., Chang, S., Colville, A., Crasta, S., Culver, R. N., Cvijović, I., D'Amato, G., Ezran, C., Galdos, F. X., Gillich, A., Goodyer, W. R., Hang, Y., Hayashi, A., Houshdaran, S., Huang, X., Irwin, J. C., Jang, S., Juanico, J. V., Kershner, A. M., Kim, S., Kiss, B., Kolluru, S., Kong, W., Kumar, M. E., Kuo, A. H., Leylek, R., Li, B., Loeb, G. B., Lu, W. J., Mantri, S., Markovic, M., McAlpine, P. L., de Morree, A., Morri, M., Mrouj, K., Mukherjee, S., Muser, T., Neuhöfer, P., Nguyen, T. D., Perez, K., Phansalkar, R., Pisco, A. O., Puluca, N., Qi, Z., Rao, P., Raquer-McKay, H., Schaum, N., Scott, B., Seddighzadeh, B., Segal, J., Sen, S., Sikandar, S., Spencer, S. P., Steffes, L. C., Subramaniam, V. R., Swarup, A., Swift, M., Travaglini, K. J., Van Treuren, W., Trimm, E., Veizades, S., Vijayakumar, S., Vo, K. C., Vorperian, S. K., Wang, W., Weinstein, H. N., Winkler, J., Wu, T. T., Xie, J., Yung, A. R., Zhang, Y., Detweiler, A. M., Mekonen, H., Neff, N. F., Sit, R. V., Tan, M., Yan, J., Bean, G. R., Charu, V., Forgó, E., Martin, B. A., Ozawa, M. G., Silva, O., Tan, S. Y., Toland, A., Vemuri, V. N., Afik, S., Awayan, K., Botvinnik, O. B., Byrne, A., Chen, M., Dehghannasiri, R., Detweiler, A. M., Gayoso, A., Granados, A. A., Li, Q., Mahmoudabadi, G., McGeever, A., de Morree, A., Olivieri, J. E., Park, M., Pisco, A. O., Ravikumar, N., Salzman, J., Stanley, G., Swift, M., Tan, M., Tan, W., Tarashansky, A. J., Vanheusden, R., Vorperian, S. K., Wang, P., Wang, S., Xing, G., Xu, C., Yosef, N., Alcántara-Hernández, M., Antony, J., Chan, C. K., Chang, C. A., Colville, A., Crasta, S., Culver, R., Dethlefsen, L., Ezran, C., Gillich, A., Hang, Y., Ho, P. Y., Irwin, J. C., Jang, S., Kershner, A. M., Kong, W., Kumar, M. E., Kuo, A. H., Leylek, R., Liu, S., Loeb, G. B., Lu, W. J., Maltzman, J. S., Metzger, R. J., de Morree, A., Neuhöfer, P., Perez, K., Phansalkar, R., Qi, Z., Rao, P., Raquer-McKay, H., Sasagawa, K., Scott, B., Sinha, R., Song, H., Spencer, S. P., Swarup, A., Swift, M., Travaglini, K. J., Trimm, E., Veizades, S., Vijayakumar, S., Wang, B., Wang, W., Winkler, J., Xie, J., Yung, A. R., Artandi, S. E., Beachy, P. A., Clarke, M. F., Giudice, L. C., Huang, F. W., Huang, K. C., Idoyaga, J., Kim, S. K., Krasnow, M., Kuo, C. S., Nguyen, P., Quake, S. R., Rando, T. A., Red-Horse, K., Reiter, J., Relman, D. A., Sonnenburg, J. L., Wang, B., Wu, A., Wu, S. M., Wyss-Coray, T. 2022; 376 (6594): eabl4896

    Abstract

    Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type-specific RNA splicing was discovered and analyzed across tissues within an individual.

    View details for DOI 10.1126/science.abl4896

    View details for PubMedID 35549404

  • Probing restoration of taste receptor cell with engineered nanobodies Lu, W., Zhang, Y., Li, A., Beachy, P. A. OXFORD UNIV PRESS. 2022
  • Toward the restoration of damaged taste organs with a genetically encoded Hedgehog pathway agonist Lu, W., Sivakamasundari, V., Zhang, Y., Li, A., Beachy, P. A. OXFORD UNIV PRESS. 2021
  • Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife Ambrosi, T. H., Sinha, R., Steininger, H. M., Hoover, M. Y., Murphy, M. P., Koepke, L. S., Wang, Y., Lu, W., Morri, M., Neff, N. F., Weissman, I. L., Longaker, M. T., Chan, C. K. 2021; 10

    Abstract

    Skeletal stem and progenitor cell populations are crucial for bone physiology. Characterization of these cell types remains restricted to heterogenous bulk populations with limited information on whether they are unique or overlap with previously characterized cell types. Here we show, through comprehensive functional and single-cell transcriptomic analyses, that postnatal long bones of mice contain at least two types of bone progenitors with bona fide skeletal stem cell (SSC) characteristics. An early osteochondral SSC (ocSSC) facilitates long bone growth and repair, while a second type, a perivascular SSC (pvSSC), co-emerges with long bone marrow and contributes to shape the hematopoietic stem cell niche and regenerative demand. We establish that pvSSCs, but not ocSSCs, are the origin of bone marrow adipose tissue. Lastly, we also provide insight into residual SSC heterogeneity as well as potential crosstalk between the two spatially distinct cell populations. These findings comprehensively address previously unappreciated shortcomings of SSC research.

    View details for DOI 10.7554/eLife.66063

    View details for PubMedID 34280086

  • Hedgehog pathway activation through nanobody-mediated conformational blockade of the Patched sterol conduit. Proceedings of the National Academy of Sciences of the United States of America Zhang, Y., Lu, W., Bulkley, D. P., Liang, J., Ralko, A., Han, S., Roberts, K. J., Li, A., Cho, W., Cheng, Y., Manglik, A., Beachy, P. A. 2020

    Abstract

    Activation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1). This nanobody potently activates the Hedgehog pathway in vitro and in vivo by stabilizing an alternative conformation of a Patched1 "switch helix," as revealed by our cryogenic electron microscopy structure. Nanobody-binding likely traps Patched in one stage of its transport cycle, thus preventing substrate movement through the Patched1 sterol conduit. Unlike the native Hedgehog ligand, this nanobody does not require lipid modifications for its activity, facilitating mechanistic studies of Hedgehog pathway activation and the engineering of pathway activating agents for therapeutic use. Our conformation-selective nanobody approach may be generally applicable to the study of other PTCH1 homologs.

    View details for DOI 10.1073/pnas.2011560117

    View details for PubMedID 33139559

  • A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 2020

    Abstract

    Ageing is characterized by a progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death1. Despite rapid advances over recent years, many of the molecular and cellular processes that underlie the progressive loss of healthy physiology are poorly understood2. To gain a better insight into these processes, here we generate a single-cell transcriptomic atlas across the lifespan of Mus musculus that includes data from 23 tissues and organs. We found cell-specific changes occurring across multiple cell types and organs, as well as age-related changes in the cellular composition of different organs. Using single-cell transcriptomic data, we assessed cell-type-specific manifestations of different hallmarks of ageing-such as senescence3, genomic instability4 and changes in the immune system2. This transcriptomic atlas-which we denote Tabula Muris Senis, or 'Mouse Ageing Cell Atlas'-provides molecular information about how the most important hallmarks of ageing are reflected in a broad range of tissues and cell types.

    View details for DOI 10.1038/s41586-020-2496-1

    View details for PubMedID 32669714

  • Ageing hallmarks exhibit organ-specific temporal signatures. Nature Schaum, N. n., Lehallier, B. n., Hahn, O. n., Pálovics, R. n., Hosseinzadeh, S. n., Lee, S. E., Sit, R. n., Lee, D. P., Losada, P. M., Zardeneta, M. E., Fehlmann, T. n., Webber, J. T., McGeever, A. n., Calcuttawala, K. n., Zhang, H. n., Berdnik, D. n., Mathur, V. n., Tan, W. n., Zee, A. n., Tan, M. n., Pisco, A. O., Karkanias, J. n., Neff, N. F., Keller, A. n., Darmanis, S. n., Quake, S. R., Wyss-Coray, T. n. 2020

    Abstract

    Ageing is the single greatest cause of disease and death worldwide, and understanding the associated processes could vastly improve quality of life. Although major categories of ageing damage have been identified-such as altered intercellular communication, loss of proteostasis and eroded mitochondrial function1-these deleterious processes interact with extraordinary complexity within and between organs, and a comprehensive, whole-organism analysis of ageing dynamics has been lacking. Here we performed bulk RNA sequencing of 17 organs and plasma proteomics at 10 ages across the lifespan of Mus musculus, and integrated these findings with data from the accompanying Tabula Muris Senis2-or 'Mouse Ageing Cell Atlas'-which follows on from the original Tabula Muris3. We reveal linear and nonlinear shifts in gene expression during ageing, with the associated genes clustered in consistent trajectory groups with coherent biological functions-including extracellular matrix regulation, unfolded protein binding, mitochondrial function, and inflammatory and immune response. Notably, these gene sets show similar expression across tissues, differing only in the amplitude and the age of onset of expression. Widespread activation of immune cells is especially pronounced, and is first detectable in white adipose depots during middle age. Single-cell RNA sequencing confirms the accumulation of T cells and B cells in adipose tissue-including plasma cells that express immunoglobulin J-which also accrue concurrently across diverse organs. Finally, we show how gene expression shifts in distinct tissues are highly correlated with corresponding protein levels in plasma, thus potentially contributing to the ageing of the systemic circulation. Together, these data demonstrate a similar yet asynchronous inter- and intra-organ progression of ageing, providing a foundation from which to track systemic sources of declining health at old age.

    View details for DOI 10.1038/s41586-020-2499-y

    View details for PubMedID 32669715

  • Strategies for single-molecule tracking of Sonic Hedgehog delivery to the regenerative niche in adult taste buds Lu, W., Baghel, A., Beachy, P. A. OXFORD UNIV PRESS. 2019: E61–E62
  • Identification of the Human Skeletal Stem Cell. Cell Chan, C. K., Gulati, G. S., Sinha, R., Tompkins, J. V., Lopez, M., Carter, A. C., Ransom, R. C., Reinisch, A., Wearda, T., Murphy, M., Brewer, R. E., Koepke, L. S., Marecic, O., Manjunath, A., Seo, E. Y., Leavitt, T., Lu, W., Nguyen, A., Conley, S. D., Salhotra, A., Ambrosi, T. H., Borrelli, M. R., Siebel, T., Chan, K., Schallmoser, K., Seita, J., Sahoo, D., Goodnough, H., Bishop, J., Gardner, M., Majeti, R., Wan, D. C., Goodman, S., Weissman, I. L., Chang, H. Y., Longaker, M. T. 2018; 175 (1): 43

    Abstract

    Stem cell regulation and hierarchical organization ofhuman skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.

    View details for PubMedID 30241615

  • Neuronal delivery of Hedgehog directs spatial patterning of taste organ regeneration. Proceedings of the National Academy of Sciences of the United States of America Lu, W. J., Mann, R. K., Nguyen, A. n., Bi, T. n., Silverstein, M. n., Tang, J. Y., Chen, X. n., Beachy, P. A. 2018; 115 (2): E200–E209

    Abstract

    How organs maintain and restore functional integrity during ordinary tissue turnover or following injury represents a central biological problem. The maintenance of taste sensory organs in the tongue was shown 140 years ago to depend on innervation from distant ganglion neurons, but the underlying mechanism has remained unknown. Here, we show that Sonic hedgehog (Shh), which encodes a secreted protein signal, is expressed in these sensory neurons, and that experimental ablation of neuronal Shh expression causes loss of taste receptor cells (TRCs). TRCs are also lost upon pharmacologic blockade of Hedgehog pathway response, accounting for the loss of taste sensation experienced by cancer patients undergoing Hedgehog inhibitor treatment. We find that TRC regeneration following such pharmacologic ablation requires neuronal expression of Shh and can be substantially enhanced by pharmacologic activation of Hedgehog response. Such pharmacologic enhancement of Hedgehog response, however, results in additional TRC formation at many ectopic sites, unlike the site-restricted regeneration specified by the projection pattern of Shh-expressing neurons. Stable regeneration of TRCs thus requires neuronal Shh, illustrating the principle that neuronal delivery of cues such as the Shh signal can pattern distant cellular responses to assure functional integrity during tissue maintenance and regeneration.

    View details for PubMedID 29279401

    View details for PubMedCentralID PMC5777079

  • Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 2018; 562 (7727): 367–72

    Abstract

    Here we present a compendium of single-cell transcriptomic data from the model organism Mus musculus that comprises more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, reveal gene expression in poorly characterized cell populations and enable the direct and controlled comparison of gene expression in cell types that are shared between tissues, such as T lymphocytes and endothelial cells from different anatomical locations. Two distinct technical approaches were used for most organs: one approach, microfluidic droplet-based 3'-end counting, enabled the survey of thousands of cells at relatively low coverage, whereas the other, full-length transcript analysis based on fluorescence-activated cell sorting, enabled the characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.

    View details for DOI 10.1038/s41586-018-0590-4

    View details for PubMedID 30283141

  • Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells SCIENCE Zhao, C., Cai, S., Shin, K., Lim, A., Kalisky, T., Lu, W., Clarke, M. F., Beachy, P. A. 2017; 356 (6335): 284-?
  • Control of inflammation by stromal Hedgehog pathway activation restrains colitis. Proceedings of the National Academy of Sciences of the United States of America Lee, J. J., Rothenberg, M. E., Seeley, E. S., Zimdahl, B., Kawano, S., Lu, W., Shin, K., Sakata-Kato, T., Chen, J. K., Diehn, M., Clarke, M. F., Beachy, P. A. 2016

    Abstract

    Inflammation disrupts tissue architecture and function, thereby contributing to the pathogenesis of diverse diseases; the signals that promote or restrict tissue inflammation thus represent potential targets for therapeutic intervention. Here, we report that genetic or pharmacologic Hedgehog pathway inhibition intensifies colon inflammation (colitis) in mice. Conversely, genetic augmentation of Hedgehog response and systemic small-molecule Hedgehog pathway activation potently ameliorate colitis and restrain initiation and progression of colitis-induced adenocarcinoma. Within the colon, the Hedgehog protein signal does not act directly on the epithelium itself, but on underlying stromal cells to induce expression of IL-10, an immune-modulatory cytokine long known to suppress inflammatory intestinal damage. IL-10 function is required for the full protective effect of small-molecule Hedgehog pathway activation in colitis; this pharmacologic augmentation of Hedgehog pathway activity and stromal IL-10 expression are associated with increased presence of CD4(+)Foxp3(+) regulatory T cells. We thus identify stromal cells as cellular coordinators of colon inflammation and suggest their pharmacologic manipulation as a potential means to treat colitis.

    View details for PubMedID 27815529

  • p53 genes function to restrain mobile elements. Genes & development Wylie, A., Jones, A. E., D'Brot, A., Lu, W. J., Kurtz, P., Moran, J. V., Rakheja, D., Chen, K. S., Hammer, R. E., Comerford, S. A., Amatruda, J. F., Abrams, J. M. 2016; 30 (1): 64-77

    Abstract

    Throughout the animal kingdom, p53 genes govern stress response networks by specifying adaptive transcriptional responses. The human member of this gene family is mutated in most cancers, but precisely how p53 functions to mediate tumor suppression is not well understood. Using Drosophila and zebrafish models, we show that p53 restricts retrotransposon activity and genetically interacts with components of the piRNA (piwi-interacting RNA) pathway. Furthermore, transposon eruptions occurring in the p53(-) germline were incited by meiotic recombination, and transcripts produced from these mobile elements accumulated in the germ plasm. In gene complementation studies, normal human p53 alleles suppressed transposons, but mutant p53 alleles from cancer patients could not. Consistent with these observations, we also found patterns of unrestrained retrotransposons in p53-driven mouse and human cancers. Furthermore, p53 status correlated with repressive chromatin marks in the 5' sequence of a synthetic LINE-1 element. Together, these observations indicate that ancestral functions of p53 operate through conserved mechanisms to contain retrotransposons. Since human p53 mutants are disabled for this activity, our findings raise the possibility that p53 mitigates oncogenic disease in part by restricting transposon mobility.

    View details for DOI 10.1101/gad.266098.115

    View details for PubMedID 26701264

    View details for PubMedCentralID PMC4701979

  • Identification and specification of the mouse skeletal stem cell. Cell Chan, C. K., Seo, E. Y., Chen, J. Y., Lo, D., McArdle, A., Sinha, R., Tevlin, R., Seita, J., Vincent-Tompkins, J., Wearda, T., Lu, W., Senarath-Yapa, K., Chung, M. T., Marecic, O., Tran, M., Yan, K. S., Upton, R., Walmsley, G. G., Lee, A. S., Sahoo, D., Kuo, C. J., Weissman, I. L., Longaker, M. T. 2015; 160 (1-2): 285-298

    Abstract

    How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.

    View details for DOI 10.1016/j.cell.2014.12.002

    View details for PubMedID 25594184

  • p53 activity is selectively licensed in the Drosophila stem cell compartment ELIFE Wylie, A., Lu, W., D'Brot, A., Buszczak, M., Abrams, J. M. 2014; 3

    Abstract

    Oncogenic stress provokes tumor suppression by p53 but the extent to which this regulatory axis is conserved remains unknown. Using a biosensor to visualize p53 action, we find that Drosophila p53 is selectively active in gonadal stem cells after exposure to stressors that destabilize the genome. Similar p53 activity occurred in hyperplastic growths that were triggered either by the Ras(V12) oncoprotein or by failed differentiation programs. In a model of transient sterility, p53 was required for the recovery of fertility after stress, and entry into the cell cycle was delayed in p53(-) stem cells. Together, these observations establish that the stem cell compartment of the Drosophila germline is selectively licensed for stress-induced activation of the p53 regulatory network. Furthermore, the findings uncover ancestral links between p53 and aberrant proliferation that are independent of DNA breaks and predate evolution of the ARF/Mdm2 axis. DOI: http://dx.doi.org/10.7554/eLife.01530.001.

    View details for DOI 10.7554/eLife.01530

    View details for Web of Science ID 000332627400002

    View details for PubMedID 24618896

    View details for PubMedCentralID PMC3949305

  • Meiotic Recombination Provokes Functional Activation of the p53 Regulatory Network SCIENCE Lu, W., Chapo, J., Roig, I., Abrams, J. M. 2010; 328 (5983): 1278-1281

    Abstract

    The evolutionary appearance of p53 protein probably preceded its role in tumor suppression, suggesting that there may be unappreciated functions for this protein. Using genetic reporters as proxies to follow in vivo activation of the p53 network in Drosophila, we discovered that the process of meiotic recombination instigates programmed activation of p53 in the germ line. Specifically, double-stranded breaks in DNA generated by the topoisomerase Spo11 provoked functional p53 activity, which was prolonged in cells defective for meiotic DNA repair. This intrinsic stimulus for the p53 regulatory network is highly conserved because Spo11-dependent activation of p53 also occurs in mice. Our findings establish a physiological role for p53 in meiosis and suggest that tumor-suppressive functions may have been co-opted from primordial activities linked to recombination.

    View details for DOI 10.1126/science.1185640

    View details for Web of Science ID 000278318600035

    View details for PubMedID 20522776

    View details for PubMedCentralID PMC2917750

  • OPINION p53 ancestry: gazing through an evolutionary lens NATURE REVIEWS CANCER Lu, W., Amatruda, J. F., Abrams, J. M. 2009; 9 (10): 758-762

    Abstract

    Evolutionary patterns indicate that primordial p53 genes predated the appearance of cancer. Therefore, wild-type tumour suppressive functions and mutant oncogenic functions that give celebrity status to this gene family were probably co-opted from unrelated primordial activities. Is it possible to deduce what these early functions might have been? And might this knowledge provide a platform for therapeutic opportunities?

    View details for DOI 10.1038/nrc2732

    View details for Web of Science ID 000270102800013

    View details for PubMedID 19776745

  • The Bax/Bak ortholog in Drosophila, Debcl, exerts limited control over programmed cell death DEVELOPMENT Galindo, K. A., Lu, W., Park, J. H., Abrams, J. M. 2009; 136 (2): 275-283

    Abstract

    Bcl-2 family members are pivotal regulators of programmed cell death (PCD). In mammals, pro-apoptotic Bcl-2 family members initiate early apoptotic signals by causing the release of cytochrome c from the mitochondria, a step necessary for the initiation of the caspase cascade. Worms and flies do not show a requirement for cytochrome c during apoptosis, but both model systems express pro- and anti-apoptotic Bcl-2 family members. Drosophila encodes two Bcl-2 family members, Debcl (pro-apoptotic) and Buffy (anti-apoptotic). To understand the role of Debcl in Drosophila apoptosis, we produced authentic null alleles at this locus. Although gross development and lifespans were unaffected, we found that Debcl was required for pruning cells in the developing central nervous system. debcl genetically interacted with the ced-4/Apaf1 counterpart dark, but was not required for killing by RHG (Reaper, Hid, Grim) proteins. We found that debcl(KO) mutants were unaffected for mitochondrial density or volume but, surprisingly, in a model of caspase-independent cell death, heterologous killing by murine Bax required debcl to exert its pro-apoptotic activity. Therefore, although debcl functions as a limited effector of PCD during normal Drosophila development, it can be effectively recruited for killing by mammalian members of the Bcl-2 gene family.

    View details for DOI 10.1242/dev.019042

    View details for Web of Science ID 000261927500011

    View details for PubMedID 19088092

  • A collective form of cell death requires homeodomain interacting protein kinase JOURNAL OF CELL BIOLOGY Link, N., Chen, P., Lu, W., Pogue, K., Chuong, A., Mata, M., Checketts, J., Abrams, J. M. 2007; 178 (4): 567-574

    Abstract

    We examined post-eclosion elimination of the Drosophila wing epithelium in vivo where collective "suicide waves" promote sudden, coordinated death of epithelial sheets without a final engulfment step. Like apoptosis in earlier developmental stages, this unique communal form of cell death is controlled through the apoptosome proteins, Dronc and Dark, together with the IAP antagonists, Reaper, Grim, and Hid. Genetic lesions in these pathways caused intervein epithelial cells to persist, prompting a characteristic late-onset blemishing phenotype throughout the wing blade. We leveraged this phenotype in mosaic animals to discover relevant genes and establish here that homeodomain interacting protein kinase (HIPK) is required for collective death of the wing epithelium. Extra cells also persisted in other tissues, establishing a more generalized requirement for HIPK in the regulation of cell death and cell numbers.

    View details for DOI 10.1083/jcb.200702125

    View details for Web of Science ID 000248803600004

    View details for PubMedID 17682052

  • Lessons from p53 in non-mammalian models CELL DEATH AND DIFFERENTIATION Lu, W., Abrams, J. M. 2006; 13 (6): 909-912

    View details for DOI 10.1038/sj.cdd.4401922

    View details for Web of Science ID 000237703600007

    View details for PubMedID 16557266

  • The apical caspase dronc governs programmed and unprogrammed cell death in Drosophila DEVELOPMENTAL CELL Chew, S. K., Akdemir, F., Chen, P., Lu, W. J., Mills, K., Daish, T., Kumar, S., Rodriguez, A., Abrams, J. M. 2004; 7 (6): 897-907

    Abstract

    Among the seven caspases encoded in the fly genome, only dronc contains a caspase recruitment domain. To assess the function of this gene in development, we produced a null mutation in dronc. Animals lacking zygotic dronc are defective for programmed cell death (PCD) and arrest as early pupae. These mutants present a range of defects, including extensive hyperplasia of hematopoietic tissues, supernumerary neuronal cells, and head involution failure. dronc genetically interacts with the Ced4/Apaf1 counterpart, Dark, and adult structures lacking dronc are disrupted for fine patterning. Furthermore, in diverse models of metabolic injury, dronc- cells are completely insensitive to induction of cell killing. These findings establish dronc as an essential regulator of cell number in development and illustrate broad requirements for this apical caspase in adaptive responses during stress-induced apoptosis.

    View details for Web of Science ID 000225650700013

    View details for PubMedID 15572131