Wenjuan Zhu
Postdoctoral Scholar, Cardiovascular Institute
Bio
Postdoctoral Fellow
Honors & Awards
-
AHA Postdoctoral Fellowship, American Heart Association (2024/01-2025/12)
-
"Young Hearts" Abstract Travel Grant, American Heart Association (2022/11)
-
Dragon Culture PhD Scholarships for Medical Studies, The Chinese University of Hong Kong (2022/07)
Boards, Advisory Committees, Professional Organizations
-
Member, American Heart Association (2018 - Present)
Professional Education
-
PhD, The Chinese University of Hong Kong, Medical Sciences (2022)
All Publications
-
Inhibition of CXCL10 and IFN-γ ameliorates myocarditis in preclinical models of SARS-CoV-2 mRNA vaccination.
Science translational medicine
2025; 17 (828): eadq0143
Abstract
Messenger RNA (mRNA) vaccines against SARS-CoV-2 are highly effective and were instrumental in curbing the COVID-19 pandemic. However, rare cases of noninfective myocarditis, particularly in young males and typically after the second dose, have been observed. Here, we explore the mediators of this myocarditis to better understand and to enhance the safety of future mRNA vaccines. Through analysis of human plasma data and in vitro experiments with human macrophages and T cells, we identified increased C-X-C motif chemokine ligand 10 (CXCL10) and interferon-γ (IFN-γ) after exposure to BNT162b2 (Pfizer) or mRNA-1273 (Moderna). Neutralization of CXCL10 and IFN-γ during the second dose (21 days after the first dose) reduced vaccine-induced cardiac injury in mice. Neutralization also reduced cardiac stress markers such as the release of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and expression of inflammatory genes in human induced pluripotent stem cell (iPSC)-derived cardiac spheroids. When exposed to these cytokines in vitro, human iPSC-derived cardiomyocytes (iPSC-CMs) exhibited impaired contractility, arrhythmogenicity, and proinflammatory gene expression patterns. Genistein, a phytoestrogen implicated in reducing cardiovascular inflammation, mitigated these effects in iPSC-CMs. In mice exposed to these cytokines or receiving BNT162b2 vaccination, genistein treatment reduced cardiac injury markers and attenuated infiltration of neutrophils and macrophages into the heart. These findings implicate CXCL10-IFN-γ signaling as a contributor to myocardial injury in experimental models of mRNA vaccination and indicate that pharmacologic modulation, such as with genistein, may mitigate cytokine-driven injury.
View details for DOI 10.1126/scitranslmed.adq0143
View details for PubMedID 41370400
-
Multiscale drug screening for cardiac fibrosis identifies MD2 as a therapeutic target.
Cell
2024
Abstract
Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.
View details for DOI 10.1016/j.cell.2024.09.034
View details for PubMedID 39413786
-
Generation of two induced pluripotent stem cell lines from patients with Williams syndrome.
Stem cell research
2024; 78: 103460
Abstract
Williams syndrome (WS) is a relatively rare genetic disorder. It arises from a microdeletion in chromosome 7q11.23, resulting in the loss of one copy of more than 20 genes. Disorders in multiple systems, including cardiovascular and nervous systems, occur in patients with WS. Here, we generated two human induced pluripotent stem cell (iPSC) lines from WS patients. Both lines expressed pluripotency markers at gene and protein levels. They possessed normal karyotypes and the potential to differentiate into three germ layers. They serve as a useful tool to study disease mechanism, test drugs, and identify promising therapeutics for patients with WS.
View details for DOI 10.1016/j.scr.2024.103460
View details for PubMedID 38861775
-
AP-2α/AP-2β transcription factors are key regulators of epidermal homeostasis.
The Journal of investigative dermatology
2024
Abstract
AP-2 transcription factors regulate ectodermal development but their roles for epidermal homeostasis in the adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (1) loss of AP-2β in keratinocytes is compensated for by AP-2α, (2) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (3) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede a progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of loss of AP-2α-dependent gene expression of CXCL14 and KRT15 as an early pathogenic event towards the manifestation of skin inflammation. Thus, AP-2α/AP-2β are critical regulators of epidermal homeostasis in the adult skin.
View details for DOI 10.1016/j.jid.2023.12.017
View details for PubMedID 38237728
-
KCTD1/KCTD15 complexes control ectodermal and neural crest cell functions and their impairment causes aplasia cutis.
The Journal of clinical investigation
2023
Abstract
Aplasia cutis congenita (ACC) is a congenital epidermal defect of the midline scalp and has been proposed to be due to a primary keratinocyte abnormality. Why it forms mainly at this anatomic site has remained a longstanding enigma. KCTD1 mutations cause ACC, ectodermal abnormalities, and kidney fibrosis, whereas KCTD15 mutations cause ACC and cardiac outflow tract abnormalities. Here, we find that KCTD1 and KCTD15 can form multimeric complexes and can compensate for each other's loss, and that disease mutations are dominant-negative, resulting in lack of KCTD1/KCTD15 function. We demonstrate that KCTD15 is critical for cardiac outflow tract development, whereas KCTD1 regulates distal nephron function. Combined inactivation of KCTD1/KCTD15 in keratinocytes results in abnormal skin appendages, but not in ACC. Instead, KCTD1/KCTD15 inactivation in neural crest cells results in ACC linked to midline skull defects, demonstrating that ACC is not caused by a primary defect in keratinocytes but is a secondary consequence of impaired cranial neural crest cells giving rise to midline cranial suture cells that express keratinocyte-promoting growth factors. Our findings explain the clinical observations in patients with KCTD1 versus KCTD15 mutations, establish KCTD1/KCTD15 as critical regulators of ectodermal and neural crest cell functions, and define ACC as a neurocristopathy.
View details for DOI 10.1172/JCI174138
View details for PubMedID 38113115
-
AP-2α/AP-2β transcription factors are key regulators of epidermal homeostasis.
bioRxiv : the preprint server for biology
2023
Abstract
AP-2 transcription factors regulate ectodermal development but their roles for epidermal homeostasis in the adult skin are unknown. We find that AP-2α is the predominant AP-2 family member in adult epidermis, followed by AP-2β. Through inactivation of AP-2α, AP-2β, or both in keratinocytes we assessed the effects of a gradient of epidermal AP-2 activity on skin function. We find that (1) loss of AP-2β in keratinocytes is compensated for by AP-2α, (2) loss of AP-2α impairs terminal keratinocyte differentiation and hair morphogenesis, and (3) the combined loss of AP-2α/AP-2β results in more severe skin and hair abnormalities. Keratinocyte differentiation defects precede a progressive neutrophilic skin inflammation. Inducible inactivation of AP-2α/AP-2β in the adult phenocopies these manifestations. Transcriptomic analyses of epidermis lacking AP-2α or AP-2α/AP-2β in keratinocytes demonstrate a terminal keratinocyte differentiation defect with upregulation of alarmin keratins and of several immune pathway regulators. Moreover, our analyses suggest a key role of loss of AP-2α-dependent gene expression of CXCL14 and KRT15 as an early pathogenic event towards the manifestation of skin inflammation. Thus, AP-2α/AP-2β are critical regulators of epidermal homeostasis in the adult skin.
View details for DOI 10.1101/2023.12.03.569763
View details for PubMedID 38105942
View details for PubMedCentralID PMC10723278
-
Generation of two induced pluripotent stem cell lines from patients with Down syndrome.
Stem cell research
2023; 72: 103204
Abstract
Down syndrome (DS) is caused by trisomy of Homo sapiens chromosome 21 (HSA21) and is by far the most common chromosomal disorder accompanied by neurodevelopmental disorders and congenital heart disease. Here, we generated two induced pluripotent stem cell (iPSC) lines from two patients with DS. These two lines exhibited normal morphology, trisomy 21 karyotype, pluripotency and differentiation capability into derivatives of three germ layers. The patient-specific iPSC lines arean invaluable resource in research to model DS-related cellular and molecular pathologies and test possible therapeutic strategies for DS.
View details for DOI 10.1016/j.scr.2023.103204
View details for PubMedID 37734318
-
Contribution of LRP1 in Human Congenital Heart Disease Correlates with Its Roles in the Outflow Tract and Atrioventricular Cushion Development
GENES
2023; 14 (4)
Abstract
Due to the prevalence of congenital heart disease in the human population, determining the role of variants in congenital heart disease (CHD) can give a better understanding of the cause of the disorder. A homozygous missense mutation in the LDL receptor-related protein 1 (Lrp1) in mice was shown to cause congenital heart defects, including atrioventricular septal defect (AVSD) and double outlet right ventricle (DORV). Integrative analysis of publicly available single-cell RNA sequencing (scRNA-seq) datasets and spatial transcriptomics of human and mouse hearts indicated that LRP1 is predominantly expressed in mesenchymal cells and mainly located in the developing outflow tract and atrioventricular cushion. Gene burden analysis of 1922 CHD individuals versus 2602 controls with whole-exome sequencing showed a significant excess of rare damaging LRP1 mutations in CHD (odds ratio (OR) = 2.22, p = 1.92 × 10-4), especially in conotruncal defect with OR of 2.37 (p = 1.77 × 10-3) and atrioventricular septal defect with OR of 3.14 (p = 0.0194). Interestingly, there is a significant relationship between those variants that have an allele frequency below 0.01% and atrioventricular septal defect, which is the phenotype observed previously in a homozygous N-ethyl-N-nitrosourea (ENU)-induced Lrp1 mutant mouse line.
View details for DOI 10.3390/genes14040947
View details for Web of Science ID 000977574000001
View details for PubMedID 37107705
View details for PubMedCentralID PMC10137934
-
Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease
CELL STEM CELL
2022; 29 (5): 840-+
Abstract
Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.
View details for DOI 10.1016/j.stem.2022.03.003
View details for Web of Science ID 000804044900005
View details for PubMedID 35395180
View details for PubMedCentralID PMC9302582
https://orcid.org/0000-0003-2724-4825