Yuki Miura
Basic Life Research Scientist, Psychiatry and Behavioral Sciences - Sleep Medicine
Honors & Awards
-
TAA Young Investigator Award, Tourette Association of America (2021)
-
Bio-X Star Mentor Award, Stanford Bio-X Undergraduate Summer Research Program (2021)
-
Stanford Maternal and Child Health Research Institute (MCHRI) Postdoctoral Support, Stanford Maternal and Child Health Research Institute (MCHRI) (2020-2021)
-
School of Medicine Dean's Postdoctoral Fellowship, Stanford University School of Medicine (2017-2018)
-
Special Fellow Student, University of Tsukuba (2012-2017)
Professional Education
-
Ph.D., University of Tsukuba, Human Biology (2017)
-
B.S., University of Tsukuba, Medical Sciences (2011)
Patents
-
Sergiu P. Pașca, Ji-il Kim, Yuki Miura. "United States Patent U.S. Publication No. US 2024-0254438-A1, 2024 Multi-Regional Human Neural Circuits in Assembloids Derived From Pluripotent Stem Cells", Leland Stanford Junior University
-
Sergiu P. Pașca, Yuki Miura. "United States Patent US-2022-0364053-A1 Human cellular model for investigating cortico-striatal-midbrain neural pathways", Leland Stanford Junior University, Nov 17, 2022
All Publications
-
Human assembloids reveal the consequences of CACNA1G gene variants in the thalamocortical pathway.
Neuron
2024
Abstract
Abnormalities in thalamocortical crosstalk can lead to neuropsychiatric disorders. Variants in CACNA1G, which encodes the α1G subunit of the thalamus-enriched T-type calcium channel, are associated with absence seizures, intellectual disability, and schizophrenia, but the cellular and circuit consequences of these genetic variants in humans remain unknown. Here, we developed a human assembloid model of the thalamocortical pathway to dissect the contribution of genetic variants in T-type calcium channels. We discovered that the M1531V CACNA1G variant associated with seizures led to changes in T-type currents in thalamic neurons, as well as correlated hyperactivity of thalamic and cortical neurons in assembloids. By contrast, CACNA1G loss, which has been associated with risk of schizophrenia, resulted in abnormal thalamocortical connectivity that was related to both increased spontaneous thalamic activity and aberrant axonal projections. These results illustrate the utility of multi-cellular systems for interrogating human genetic disease risk variants at both cellular and circuit level.
View details for DOI 10.1016/j.neuron.2024.09.020
View details for PubMedID 39419023
-
Assembloid model to study loop circuits of the human nervous system
bioRxiv
2024
View details for DOI 10.1101/2024.10.13.617729
-
Biocompatible polymers for scalable production of human neural organoids
bioRxiv
2022
View details for DOI 10.1101/2022.03.18.484949
-
Engineering brain assembloids to interrogate human neural circuits.
Nature protocols
2022
Abstract
The development of neural circuits involves wiring of neurons locally following their generation and migration, as well as establishing long-distance connections between brain regions. Studying these developmental processes in the human nervous system remains difficult because of limited access to tissue that can be maintained as functional over time in vitro. We have previously developed a method to convert human pluripotent stem cells into brain region-specific organoids that can be fused and integrated to form assembloids and study neuronal migration. In contrast to approaches that mix cell lineages in 2D cultures or engineer microchips, assembloids leverage self-organization to enable complex cell-cell interactions, circuit formation and maturation in long-term cultures. In this protocol, we describe approaches to model long-range neuronal connectivity in human brain assembloids. We present how to generate 3D spheroids resembling specific domains of the nervous system and then how to integrate them physically to allow axonal projections and synaptic assembly. In addition, we describe a series of assays including viral labeling and retrograde tracing, 3D live imaging of axon projection and optogenetics combined with calcium imaging and electrophysiological recordings to probe and manipulate the circuits in assembloids. The assays take 3-4 months to complete and require expertise in stem cell culture, imaging and electrophysiology. We anticipate that these approaches will be useful in deciphering human-specific aspects of neural circuit assembly and in modeling neurodevelopmental disorders with patient-derived cells.
View details for DOI 10.1038/s41596-021-00632-z
View details for PubMedID 34992269
-
Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells.
Nature biotechnology
2020; 38 (12): 1421–30
Abstract
Cortico-striatal projections are critical components of forebrain circuitry that regulate motivated behaviors. To enable the study of the human cortico-striatal pathway and how its dysfunction leads to neuropsychiatric disease, we developed a method to convert human pluripotent stem cells into region-specific brain organoids that resemble the developing human striatum and include electrically active medium spiny neurons. We then assembled these organoids with cerebral cortical organoids in three-dimensional cultures to form cortico-striatal assembloids. Using viral tracing and functional assays in intact or sliced assembloids, we show that cortical neurons send axonal projections into striatal organoids and form synaptic connections. Medium spiny neurons mature electrophysiologically following assembly and display calcium activity after optogenetic stimulation of cortical neurons. Moreover, we derive cortico-striatal assembloids from patients with a neurodevelopmental disorder caused by a deletion on chromosome 22q13.3 and capture disease-associated defects in calcium activity, showing that this approach will allow investigation of the development and functional assembly of cortico-striatal connectivity using patient-derived cells.
View details for DOI 10.1038/s41587-020-00763-w
View details for PubMedID 33273741
-
Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids.
Nature biotechnology
2024
Abstract
Realizing the full potential of organoids and assembloids to model neural development and disease will require improved methods for long-term, minimally invasive recording of electrical activity. Current technologies, such as patch clamp, penetrating microelectrodes, planar electrode arrays and substrate-attached flexible electrodes, do not allow chronic recording of organoids in suspension, which is necessary to preserve architecture. Inspired by kirigami art, we developed flexible electronics that transition from a two-dimensional to a three-dimensional basket-like configuration with either spiral or honeycomb patterns to accommodate the long-term culture of organoids in suspension. Here we show that this platform, named kirigami electronics (KiriE), integrates with and enables chronic recording of cortical organoids for up to 120days while preserving their morphology, cytoarchitecture and cell composition. We demonstrate integration of KiriE with optogenetic and pharmacological manipulation and modeling phenotypes related to a genetic disease. Moreover, KiriE can capture corticostriatal connectivity in assembloids following optogenetic stimulation. Thus, KiriE will enable investigation of disease and activity patterns underlying nervous system assembly.
View details for DOI 10.1038/s41587-023-02081-3
View details for PubMedID 38253880
-
Primate cell fusion disentangles gene regulatory divergence in neurodevelopment.
Nature
2021
Abstract
Among primates, humans display a unique trajectory of development that is responsible for the many traits specific to our species. However, the inaccessibility of primary human and chimpanzee tissues has limited our ability to study human evolution. Comparative in vitro approaches using primate-derived induced pluripotent stem cells have begun to reveal species differences on the cellular and molecular levels1,2. In particular, brain organoids have emerged as a promising platform to study primate neural development in vitro3-5, although cross-species comparisons of organoids are complicated by differences in developmental timing and variability of differentiation6,7. Here we develop a new platform to address these limitations by fusing human and chimpanzee induced pluripotent stem cells to generate a panel of tetraploid hybrid stem cells. We applied this approach to study species divergence in cerebral cortical development by differentiating these cells into neural organoids. We found that hybrid organoids provide a controlled system for disentangling cis- and trans-acting gene-expression divergence across cell types and developmental stages, revealing a signature of selection on astrocyte-related genes. In addition, we identified an upregulation of the human somatostatin receptor 2 gene (SSTR2), which regulates neuronal calcium signalling and is associated with neuropsychiatric disorders8,9. We reveal a human-specific response to modulation of SSTR2 function in cortical neurons, underscoring the potential of this platform for elucidating the molecular basis of human evolution.
View details for DOI 10.1038/s41586-021-03343-3
View details for PubMedID 33731928
-
Mapping human brain organoids on a spatial atlas.
Cell stem cell
2021; 28 (6): 983-984
Abstract
Brain organoids are tridimensional, self-organizing cultures derived from pluripotent stem cells that recapitulate aspects of human neurodevelopment and can be applied toward investigating neural disease and evolution. In this issue of Cell Stem Cell, Fleck et al. (2021) describe a computational platform for mapping cell identity in organoids.
View details for DOI 10.1016/j.stem.2021.05.004
View details for PubMedID 34087156
-
Generation of Functional Human 3D Cortico-Motor Assembloids.
Cell
2020
Abstract
Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.
View details for DOI 10.1016/j.cell.2020.11.017
View details for PubMedID 33333020
-
Reliability of human cortical organoid generation.
Nature methods
2019; 16 (1): 75–78
Abstract
The differentiation of pluripotent stem cells in three-dimensional cultures can recapitulate key aspects of brain development, but protocols are prone to variable results. Here we differentiated multiple human pluripotent stem cell lines for over 100 d using our previously developed approach to generate brain-region-specific organoids called cortical spheroids and, using several assays, found that spheroid generation was highly reliable and consistent. We anticipate the use of this approach for large-scale differentiation experiments and disease modeling.
View details for PubMedID 30573846
-
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures.
Nature neuroscience
2019
Abstract
Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging because of the limited accessibility of functional human brain tissue. Here, we developed a new differentiation method of human induced pluripotent stem cells to generate three-dimensional brain organoids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids. We found that oligodendrocyte lineage cells derived in human oligodendrocyte spheroids transitioned through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte lineage cells and their susceptibility to lysolecithin exposure could be captured by live imaging. Moreover, their morphology changed as they matured over time in vitro and started myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the CNS.
View details for PubMedID 30692691
-
Polarizing brain organoids.
Nature biotechnology
2019
View details for PubMedID 30936565
-
Physiological function of phospholipase D2 in anti-tumor immunity: regulation of CD8+ T lymphocyte proliferation.
Scientific reports
2018; 8 (1): 6283
Abstract
Two major phospholipase D (PLD) isozymes in mammals, PLD1 and PLD2, hydrolyze the membrane phospholipid phosphatidylcholine to choline and the lipid messenger phosphatidic acid. Although their roles in cancer cells have been well studied, their functions in tumor microenvironment have not yet been clarified. Here, we demonstrate that PLD2 in cytotoxic CD8+ T cells plays a crucial role in anti-tumor immunity by regulating their cell proliferation. We found that growth of tumors formed by subcutaneously transplanted cancer cells is enhanced in Pld2-knockout mice. Interestingly, this phenotype was found to be at least in part attributable to the ablation of Pld2 from bone marrow cells. The number of CD8+ T cells, which induce cancer cell death, significantly decreased in the tumor produced in Pld2-knockout mice. In addition, CD3/CD28-stimulated proliferation of primary cultured splenic CD8+ T cells is markedly suppressed by Pld2 ablation. Finally, CD3/CD28-dependent activation of Erk1/2 and Ras is inhibited in Pld2-deleted CD8+ T cells. Collectively, these results indicate that PLD2 in CD8+ T cells plays a key role in their proliferation through activation of the Ras/Erk signaling pathway, thereby regulating anti-tumor immunity.
View details for DOI 10.1038/s41598-018-24512-x
View details for PubMedID 29674728
-
ACAP3, the GTPase-activating protein specific to the small GTPase Arf6, regulates neuronal migration in the developing cerebral cortex.
Biochemical and biophysical research communications
2017
Abstract
The GTPase-activating protein (GAP) specific to the small GTPase Arf6, ACAP3, is known to regulate morphogenesis of neurons in vitro. However, physiological significance of ACAP3 in the brain development in vivo remains unclear. Here, we show that ACAP3 is involved in neuronal migration in the developing cerebral cortex of mice. Knockdown of ACAP3 in the developing cortical neurons of mice in utero significantly abrogated neuronal migration in the cortical layer, which was restored by ectopic expression of wild type of ACAP3, but not by its GAP-inactive mutant. Furthermore, morphological changes of neurons during migration in the cortical layer were impeded in ACAP3-knocked-down cortical neurons. These results provide evidence that ACAP3 plays a crucial role in migration of cortical neurons by regulating their morphological change during development of cerebral cortex.
View details for DOI 10.1016/j.bbrc.2017.09.076
View details for PubMedID 28919417
-
The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing.
Scientific reports
2017; 7: 46649
Abstract
The earlier step of cutaneous wound healing process, re-epithelialization of the wounded skin, is triggered by a variety of growth factors. However, molecular mechanisms through which growth factors trigger skin wound healing are less understood. Here, we demonstrate that hepatocyte growth factor (HGF)/c-Met signaling-induced expression of the small G protein Arf6 mRNA in keratinocytes is essential for the skin wound healing. Arf6 mRNA expression was dramatically induced in keratinocytes at the wounded skin, which was specifically suppressed by the c-Met inhibitor. Wound healing of the skin was significantly delayed in keratinocyte-specific Arf6 conditional knockout mice. Furthermore, Arf6 deletion from keratinocytes remarkably suppressed HGF-stimulated cell migration and peripheral membrane ruffle formation, but did not affect skin morphology and proliferation/differentiation of keratinocytes. These results are consistent with the notion that Arf6 expressed in skin keratinocytes through the HGF/c-Met signaling pathway in response to skin wounding plays an important role in skin wound healing by regulating membrane dynamics-based motogenic cellular function of keratinocytes.
View details for DOI 10.1038/srep46649
View details for PubMedID 28429746
View details for PubMedCentralID PMC5399375
-
Machineries regulating the activity of the small GTPase Arf6 in cancer cells are potential targets for developing innovative anti-cancer drugs.
Advances in biological regulation
2016
Abstract
The Small GTPase ADP-ribosylation factor 6 (Arf6) functions as the molecular switch in cellular signaling pathways by cycling between GDP-bound inactive and GTP-bound active form, which is precisely regulated by two regulators, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Numerous studies have shown that these machineries play critical roles in tumor angiogenesis/growth and cancer cell invasion/metastasis through regulating the cycling of Arf6. Here, we summarize accumulating knowledge for involvement of Arf6 GEFs/GAPs and small molecule inhibitors of Arf6 signaling/cycling in cancer progression, and discuss possible strategies for developing innovative anti-cancer drugs targeting Arf6 signaling/cycling.
View details for DOI 10.1016/j.jbior.2016.10.004
View details for PubMedID 27776975
-
ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.
Biochemical journal
2016; 473 (17): 2591-2602
Abstract
ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons.
View details for DOI 10.1042/BCJ20160183
View details for PubMedID 27330119