Zhenghan Peng
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2024
Education & Certifications
-
B.S., Sichuan University, Materials Physics (2022)
All Publications
-
Chemically Tailored Growth of 2D Semiconductors via Hybrid Metal-Organic Chemical Vapor Deposition.
ACS nano
2024
Abstract
Two-dimensional (2D) semiconducting transition-metal dichalcogenides (TMDCs) are an exciting platform for excitonic physics and next-generation electronics, creating a strong demand to understand their growth, doping, and heterostructures. Despite significant progress in solid-source (SS-) and metal-organic chemical vapor deposition (MOCVD), further optimization is necessary to grow highly crystalline 2D TMDCs with controlled doping. Here, we report a hybrid MOCVD growth method that combines liquid-phase metal precursor deposition and vapor-phase organo-chalcogen delivery to leverage the advantages of both MOCVD and SS-CVD. Using our hybrid approach, we demonstrate WS2 growth with tunable morphologies─from separated single-crystal domains to continuous monolayer films─on a variety of substrates, including sapphire, SiO2, and Au. These WS2 films exhibit narrow neutral exciton photoluminescence line widths down to 27-28 meV and room-temperature mobility up to 34-36 cm2 V-1 s-1. Through simple modifications to the liquid precursor composition, we demonstrate the growth of V-doped WS2, MoxW1-xS2 alloys, and in-plane WS2-MoS2 heterostructures. This work presents an efficient approach for addressing a variety of TMDC synthesis needs on a laboratory scale.
View details for DOI 10.1021/acsnano.4c02164
View details for PubMedID 39230253
-
Modulate the Interfacial Oxygen Vacancy for High Performance MoS2 Photosensing−Memory Device
Advanced Optical Materials
2022
View details for DOI 10.1002/adom.202202378
-
Layer-by-Layer Growth of AA-Stacking MoS2 for Tunable Broadband Phototransistors
ACS APPLIED MATERIALS & INTERFACES
2021; 13 (49): 59154-59163
Abstract
The stacking configuration has been considered as an important additional degree of freedom to tune the physical property of layered materials, such as superconductivity and interlayer excitons. However, the facile growth of highly uniform stacking configuration is still a challenge. Herein, the AA-stacking MoS2 domains with a ratio up to 99.5% has been grown by using the modified chemical vapor deposition through introducing NaCl molecules in the confined space. By tuning the growth time, MoS2 domains would transit from an AA-stacking bilayer to an AAAAA-stacking five-layer. The epitaxial growth mechanism has been insightfully studied, revealing that the critical nucleation size of the AA-stacking bilayer is 5.0 ± 3.0 μm. Through investigation of the photoluminescence, the photoemission, especially the indirect photoexcitation, is dependent on both the stacking fashion and layer number. Furthermore, by studying the gate-tuned MoS2 phototransistors, we found a significant dependence on the stacking configuration of MoS2 of the photoexcitation and a different gate tunable photoresponse. The AAA-stacking trilayer MoS2 phototransistor delivers a photoresponse of 978.14 A W-1 at 550 nm. By correction of the external quantum efficiency with external field and illumination power density, it has been found that the photoresponse tunability is dependent on the layer number due to the strong photogating effect. This strategy provides a general avenue for the epitaxial growth of van der Waals film which will further facilitate the applications in a tunable photodetector.
View details for DOI 10.1021/acsami.1c19906
View details for Web of Science ID 000752977200088
View details for PubMedID 34856097
-
Machine learning atomic-scale stiffness in metallic glass
EXTREME MECHANICS LETTERS
2021; 48
View details for DOI 10.1016/j.eml.2021.101446
View details for Web of Science ID 000686901700002