Independent Labs, Institutes, and Centers (Dean of Research)


Showing 51-100 of 153 Results

  • Yan Chang

    Yan Chang

    Ph.D. Student in Japanese, admitted Autumn 2021
    Other Tech - Graduate, FSI

    BioYan Chang is a Ph.D. student in modern and contemporary East Asian literatures, cultures, and media. His research interests currently center on trans-linguality, trans-culture, and trans-nationality in post-Cold War Japanophone literature. His academic concerns also include visuality and modernity of modern Japanese literature in the Taisho period as well as Shanghai urbanization and the concomitant media representations in the 1990s. Before joining Stanford, Yan received a joint B.A. in Economics and Japanese from Shanghai International Studies University, an M.A. in Japanese Culture Studies from Nagoya University, and an M.A. in Asian and Middle Eastern Studies from the University of Minnesota at Twin Cities.

  • Danton Char

    Danton Char

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (Pediatric)

    Current Research and Scholarly InterestsDr. Char's research is focused on identifying and addressing ethical concerns associated with the implementation of next generation technologies like whole genome sequencing and its attendant technologies like machine learning to bedside clinical care.

  • Moses Charikar

    Moses Charikar

    Donald E. Knuth Professor and Professor, by courtesy, of Mathematics

    Current Research and Scholarly InterestsEfficient algorithmic techniques for processing, searching and indexing massive high-dimensional data sets; efficient algorithms for computational problems in high-dimensional statistics and optimization problems in machine learning; approximation algorithms for discrete optimization problems with provable guarantees; convex optimization approaches for non-convex combinatorial optimization problems; low-distortion embeddings of finite metric spaces.

  • Tanmoy Chattopadhyay

    Tanmoy Chattopadhyay

    Physical Science Research Scientist

    Current Research and Scholarly Interests1. X-ray astronomical instrumentation - Scintillators, Si-Photomultipliers, CZTs, X-ray CCDs, X-ray Hybrid CMOS detectors, SiSeRO (Single electron Sensitive Read Out) devices
    2. Hard X-ray polarimetry and associated instrumentation
    3. Polarimetric studies of pulsars, black hole XRBs, Gamma Ray Bursts using AstroSat-CZTI
    4. X-ray lobster optic (Schmidt type)

  • Akshay Chaudhari

    Akshay Chaudhari

    Assistant Professor (Research) of Radiology (Integrative Biomedical Imaging Informatics at Stanford) and, by courtesy, of Biomedical Data Science

    Current Research and Scholarly InterestsDr. Chaudhari is interested in the application of artificial intelligence techniques to all aspects of medical imaging, including automated schedule and reading prioritization, image reconstruction, quantitative analysis, and prediction of patient outcomes. His interests range from developing novel data-efficient machine learning algorithms to clinical deployment and validation of patient outcomes. He is also exploring combining imaging with clinical, natural language, and time series data.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Associate Professor of Mechanical Engineering and, by courtesy, of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsWe study the physics of cell migration, division, and morphogenesis in 3D, as well cell-matrix mechanotransduction, or the process by which cells sense and respond to mechanical properties of the extracellular matrices. For both these areas, we use engineered biomaterials for 3D culture as artificial extracellular matrices.

  • Bertha Chen, MD

    Bertha Chen, MD

    Professor of Obstetrics and Gynecology (Gynecology - Urogynecology) and, by courtesy, of Urology

    Current Research and Scholarly InterestsDr. Chen’s research examines the molecular causes of urinary incontinence and pelvic floor dysfunction. Recognizing that urinary incontinence linked to demise of smooth muscle sphincter function, she is investigating the potential use of stem cell regeneration to restore muscle capacity.

  • James K. Chen

    James K. Chen

    Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry

    Current Research and Scholarly InterestsOur laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.

  • Jonathan H. Chen, MD, PhD

    Jonathan H. Chen, MD, PhD

    Assistant Professor of Medicine (Biomedical Informatics)

    Current Research and Scholarly InterestsInformatics solutions ares the only credible approach to systematically address challenges of escalating complexity in healthcare. Tapping into real-world clinical data streams like electronic medical records will reveal the community's latent knowledge in a reproducible form. Delivering this back as clinical decision support will uniquely close the loop on a continuously learning health system.

  • Lu Chen

    Lu Chen

    Professor of Neurosurgery and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly InterestsWhat distinguishes us humans from other animals is our ability to undergo complex behavior. The synapses are the structural connection between neurons that mediates the communication between neurons, which underlies our various cognitive function. My research program aims to understand the cellular and molecular mechanisms that underlie synapse function during behavior in the developing and mature brain, and how synapse function is altered during mental retardation.

  • Xiaoke Chen

    Xiaoke Chen

    Associate Professor of Biology

    Current Research and Scholarly InterestsOur goal is to understand how brain circuits mediate motivated behaviors and how maladaptive changes in these circuits cause mood disorders. To achieve this goal, we focus on studying the neural circuits for pain and addiction, as both trigger highly motivated behaviors, whereas, transitioning from acute to chronic pain or from recreational to compulsive drug use involves maladaptive changes of the underlying neuronal circuitry.

  • Alan G. Cheng, MD

    Alan G. Cheng, MD

    Edward C. and Amy H. Sewall Professor in the School of Medicine, Professor of Otolaryngology - Head & Neck Surgery (OHNS) and, by courtesy, of Pediatrics

    Current Research and Scholarly InterestsActive Wnt signaling maintains somatic stem cells in many organ systems. Using Wnt target genes as markers, we have characterized distinct cell populations with stem cell behavior in the inner ear, an organ thought to be terminally differentiated. Ongoing work focuses on delineating the developing significance of these putative stem/progenitor cells and their behavior after damage.

  • Paul Cheng MD PhD

    Paul Cheng MD PhD

    Assistant Professor of Medicine (Cardiovascular Medicine)

    BioDr. Cheng is a Cardiologist at Stanford University School of Medicine in the Department of Medicine and a member of the Cardiovascular Research Institute. Dr. Cheng received his BEng in Chemical Engineering and BSc in biology at MIT. He subsequently completed his MD/PhD at UCSF working in the Srivastava lab studying how extracellular morphogenic signals affect cardiac development and fate determination of cardiac progenitors. Dr. Cheng completed internal medicine residency and cardiology fellowship at Stanford. His current clinical focus is in amyloidosis and cardio-oncology. During his post doctoral research in the Quertermous lab, he pioneered the application of single cell transcriptomic and epigenetic techniques to study human vascular diseases including atherosclerosis and aneurysm, and applied these techniques to investigate molecular mechanisms behind genetic risk factors for several human vascular diseases including atherosclerosis, and aortopathies such as Marfan's and Loey-Dietz syndrome.

    The Cheng lab takes a patient-to-bench-to-bedside approach to science. The lab focuses on elucidating new pathogenic mechanisms of human vascular diseases through combing human genetics and primary vascular disease tissues, with high-resolution transcriptomic and epigenetic profiling to generate novel hypothesis that are then tested in a variety of in vitro and in vivo models. The lab is focused on two broad questions: (1) understanding the biological underpinning of the differences in diseases propensities of different arterial segments in an individual (i.e. why do you have atherosclerosis and aneurysms in certain segments but not others), and (2) understanding the role of perivascular fibroblast in human vascular diseases.

  • Mike Cherry

    Mike Cherry

    Professor (Research) of Genetics, Emeritus

    Current Research and Scholarly InterestsMy research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.

  • Glenn M. Chertow

    Glenn M. Chertow

    Norman S. Coplon/Satellite Healthcare Professor of Medicine and Professor, by courtesy, of Epidemiology and Population Health and of Health Policy

    Current Research and Scholarly Interestsclinical epidemiology, health services research, decision sciences, clinical trials in acute and chronic kidney disease

  • Emilie Cheung, MD

    Emilie Cheung, MD

    Associate Professor of Orthopaedic Surgery

    Current Research and Scholarly InterestsPyrocarbon humeral head replacement
    Clinical outcome after shoulder replacement
    Clinical outcome after elbow replacement
    Clinical outcomes following complex reconstruction of the shoulder and elbow,
    Bone mineral density in the shoulder,
    3D kinematics of the shoulder girdle after arthroplasty

  • E.J. Chichilnisky

    E.J. Chichilnisky

    John R. Adler Professor, Professor of Neurosurgery and of Ophthalmology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly InterestsFunctional circuitry of the retina and design of retinal prostheses

  • Allis Chien

    Allis Chien

    Director, SUMS, Mass Spectrometry Center

    Current Role at StanfordDirector, Stanford University Mass Spectrometry (SUMS) core resource laboratory

  • Yueh-hsiu Chien

    Yueh-hsiu Chien

    Professor of Microbiology & Immunology

    Current Research and Scholarly InterestsContribution of T cells to immunocompetence and autoimmunity; how the immune system clears infection, avoids autoimmunity and how infection impacts on the development of immune responses.

  • Gheorghe Chistol

    Gheorghe Chistol

    Assistant Professor of Chemical and Systems Biology

    Current Research and Scholarly InterestsResearch in my laboratory is aimed at understanding how eukaryotes replicate their DNA despite numerous challenges (collectively known as replication stress), and more generally – how eukaryotic cells safeguard genome integrity. Specifically, we are investigating: (i) mechanisms that regulate the activity of the replicative helicase during replication stress, (ii) mechanisms that control the inheritance of epigenetic information during replication, and (iii) mechanisms of ubiquitin-mediated regulation of genome maintenance. We utilize single-molecule microscopy to directly image fluorescently-labeled replication factors and track them in real time in Xenopus egg extracts. I developed this system as a postdoctoral fellow, and used it to monitor how the eukaryotic replicative helicase copes with DNA damage. We plan to further extend the capabilities of this platform to directly visualize other essential replication factors, nucleosomes, and regulatory post-translational modifications like ubiquitin chains. By elucidating molecular mechanisms responsible for maintaining genome stability, we aim to better understand the link between genome instability and cancer, and how these mechanisms can be harnessed to improve disease treatment.

  • Bill Chiu

    Bill Chiu

    Associate Professor of Surgery (Pediatric Surgery)

    BioDr. Chiu obtained his B.S. degree in Biological Sciences and graduated with Honors from Stanford University. After graduating, he received his Medical Degree at Northwestern University Feinberg School of Medicine, where he remained for his internship and General Surgery residency training. Dr. Chiu completed his Pediatric Surgery training at The Children’s Hospital of Philadelphia. He is an Associate Professor at Stanford University School of Medicine where he has an active research program studying innovative approaches to treat patients with neuroblastoma.

  • Wah Chiu

    Wah Chiu

    Wallenberg-Bienenstock Professor and Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsMy research includes methodology improvements in single particle cryo-EM for atomic resolution structure determination of molecules and molecular machines, as well as in cryo-ET of cells and organelles towards subnanometer resolutions. We collaborate with many researchers around the country and outside the USA on understanding biological processes such as protein folding, virus assembly and disassembly, pathogen-host interactions, signal transduction, and transport across cytosol and membranes.

  • Valerie Chock

    Valerie Chock

    Professor of Pediatrics (Neonatology) and, by courtesy, of Obstetrics and Gynecology (Maternal Fetal Medicine)

    Current Research and Scholarly InterestsNeurological monitoring in critically ill infants. Altered hemodynamics in neonates, especially in relation to prematurity, congenital heart disease, and central nervous system injury. Determination of the hemodynamic significance and effects of a patent ductus arteriosus in the preterm infant. Utilizing NIRS (near-infrared spectroscopy) and other technologies for improved monitoring in the NICU.

  • Eun Young Choi, PhD

    Eun Young Choi, PhD

    Instructor, Neurosurgery

    Current Research and Scholarly InterestsDr. Choi is broadly interested in mapping the brain’s connectivity and characterizing its functional dynamics using advanced neuroimaging and clinical neurophysiological methods, as well as utilizing this information to identify individual-specific neurosurgical targets for neuromodulation (e.g., deep brain stimulation). Her prior work has mapped the functional and connectional organization of the striatum using neuroimaging and neuroanatomical connectivity methods. She is currently focused on the use of thalamic deep brain stimulation to improve memory and attention in traumatic brain injury and Alzheimer’s disease.

  • Danny Hung-Chieh Chou

    Danny Hung-Chieh Chou

    Assistant Professor of Pediatrics (Endocrinology) and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur research program integrates concepts of chemical biology, protein engineering and structure biology to design new therapeutic leads and generate probes to study biological processes. A key focus of our lab is insulin, an essential hormone in our body to reduce blood glucose levels. We generate synthetic libraries of insulin analogs to select for chemical probes, and investigate natural insulin molecules (e.g. from the venom of fish-hunting cone snails!) to develop novel therapeutic candidates. We are especially interested in using chemical and enzymatic synthesis to create novel chemical entities with enhanced properties, and leverage the strong expertise of our collaborators to apply our skill sets in the fields of cancer biology, immunology and pain research. Our ultimate goal is to translate our discovery into therapeutic interventions in human diseases.

  • Angele Christin

    Angele Christin

    Associate Professor of Communication and, by courtesy, of Sociology

    Current Research and Scholarly InterestsAngèle Christin studies how algorithms and analytics transform professional values, expertise, and work practices.

    Her book, Metrics at Work: Journalism and the Contested Meaning of Algorithms (Princeton University Press, 2020) focuses on the case of web journalism, analyzing the growing importance of audience data in web newsrooms in the U.S. and France. Drawing on ethnographic methods, Angèle shows how American and French journalists make sense of traffic numbers in different ways, which in turn has distinct effects on the production of news in the two countries. She discussed it on the New Books Network podcast.

    In a related study, she analyzed the construction, institutionalization, and reception of predictive algorithms in the U.S. criminal justice system, building on her previous work on the determinants of criminal sentencing in French courts.

    Her new project examines the paradoxes of algorithmic labor through a study of influencers and influencer marketing on YouTube, Instagram, and TikTok.

  • Constance Chu, MD

    Constance Chu, MD

    Professor of Orthopaedic Surgery (Sports Medicine)

    BioDr. Constance R. Chu is Professor and Vice Chair Research, in the Department of Orthopedic Surgery at Stanford University. She is also Director of the Joint Preservation Center and Chief of Sports Medicine at the VA Palo Alto. Previously, she was the Albert Ferguson Endowed Chair and Professor of Orthopaedic Surgery at the University of Pittsburgh. She is a clinician-scientist who is both principal investigator of several projects funded by the National Institutes of Health and who has been recognized as a Castle-Connelly/US News and World Report “Top Doctor” in Orthopedic Surgery as well as on Becker’s list of Top Knee Surgeons in the United States. Her clinical practice focuses on the knee: primarily restoration and reconstruction of the ACL, menisci and cartilage. She graduated from the U.S. Military Academy at West Point and earned her medical degree from Harvard Medical School.

    As Director of the multi-disciplinary Joint Preservation Center structured to seamlessly integrate the latest advances in biologics, mechanics, and imaging with comprehensive patient centered musculoskeletal and orthopedic care, Dr. Chu aims to develop a new model for health care delivery, research and education with an emphasis on health promotion and prevention. Cornerstones of this program include teamwork and a focus on personalized medicine. A central goal is to transform the clinical approach to osteoarthritis from palliation to prevention. In addition to optimizing clinical operations, outstanding research is critical to developing more effective new treatments. Towards this end, Dr. Chu is leading innovative translational research from bench to bedside in three main areas: quantitative imaging and biomarker development for early diagnosis and staging of joint and cartilage injury and degeneration; cartilage tissue engineering and stem cell based cartilage repair; and molecular and biological therapies for joint restoration and joint rejuvenation. Her research efforts have led to more than 30 professional awards and honors to include a Kappa Delta Award, considered to be the highest research honor in Orthopedic Surgery.

    Dr. Chu also regularly holds leadership and committee positions in major professional organizations such as the American Association of Orthopedic Surgeons (AAOS) and the American Orthopedic Association (AOA). In her subspecialty of Orthopedic Sports Medicine, she is a past President of the Forum Sports Focus Group, a member of the Herodicus Society of leaders in Sports Medicine, and immediate past Chair of the American Orthopedic Society for Sports Medicine (AOSSM) Research Council. She is alumnus of the AOA American, British, Canadian (ABC) and the AOSSM Traveling Fellowships.

  • Gilbert Chu

    Gilbert Chu

    Professor of Medicine (Oncology) and of Biochemistry

    Current Research and Scholarly InterestsAfter shuttering the wet lab, we have focused on: a point-of-care device to measure blood ammonia and prevent brain damage; a human protein complex that juxtaposes and joins DNA ends for repair and V(D)J recombination; and strategies for teaching students and for reducing selection bias in educational programs.

  • Lawrence Chu, MD, MS

    Lawrence Chu, MD, MS

    Professor of Anesthesiology, Perioperative and Pain Medicine

    Current Research and Scholarly InterestsI have two lines of research, one involving educational informatics and use of technology in postgraduate medical education and another involving NIH-funded work in patient-oriented clinical research regarding opioid use and physiologic responses associated with acute and chronic exposure in humans.

    For a full description of my educational informatics work, please see my website aim.stanford.edu.

    My clinical research focuses on the study opiate-induced hyperalgesia in patients suffering from chronic pain.

    I am currently conducting an NIH-funded five year double-blinded randomized controlled clinical study (NIGMS award 1K23GM071400-01) that prospectively examines the following hypotheses: 1) pain patients on chronic opioid therapy develop dose-dependent tolerance and/or hyperalgesia to these medications over time, 2) opiate-induced tolerance and hyperalgesia develop differently with respect to various types of pain, 3) opioid-induced hyperalgesia occurs independently of withdrawal phenomena, and 4) opiate-induced tolerance and hyperalgesia develop differently based on gender and/or ethnicity.

    The study is the first quantitative and prospective examination of tolerance and hyperalgesia in pain patients and may have important implications for the rational use of opioids in the treatment of chronic pain.

  • Steven Chu

    Steven Chu

    William R. Kenan Jr. Professor, Professor of Molecular and Cellular Physiology and of Energy Science and Engineering

    Current Research and Scholarly InterestsSynthesis, functionalization and applications of nanoparticle bioprobes for molecular cellular in vivo imaging in biology and biomedicine. Linear and nonlinear difference frequency mixing ultrasound imaging. Lithium metal-sulfur batteries, new approaches to electrochemical splitting of water. CO2 reduction, lithium extraction from salt water

  • Katrin Chua

    Katrin Chua

    Professor of Medicine (Endocrinology, Gerontology and Metabolism)
    On Leave from 10/01/2023 To 07/31/2024

    Current Research and Scholarly InterestsOur lab is interested in understanding molecular processes that underlie aging and age-associated pathologies in mammals. We focus on a family of genes, the SIRTs, which regulate stress resistance and lifespan in lower organisms such as yeast, worms, and flies. In mammals, we recently uncovered a number of ways in which SIRT factors may contribute to cellular and organismal aging by regulating resistance to various forms of stress. We have now begun to characterize the molecular mechanisms by which these SIRT factors function. In particular, we are interested in how SIRT factors regulate chromatin, the molecular structure in which the DNA of mammalian genomes is packaged, and how such functions may link genome maintenance to stress resistance and aging.

  • William Chueh

    William Chueh

    Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy

    BioThe availability of low-cost but intermittent renewable electricity (e.g., derived from solar and wind) underscores the grand challenge to store and dispatch energy so that it is available when and where it is needed. Redox-active materials promise the efficient transformation between electrical, chemical, and thermal energy, and are at the heart of carbon-neutral energy cycles. Understanding design rules that govern materials chemistry and architecture holds the key towards rationally optimizing technologies such as batteries, fuel cells, electrolyzers, and novel thermodynamic cycles. Electrochemical and chemical reactions involved in these technologies span diverse length and time scales, ranging from Ångströms to meters and from picoseconds to years. As such, establishing a unified, predictive framework has been a major challenge. The central question unifying our research is: “can we understand and engineer redox reactions at the levels of electrons, ions, molecules, particles and devices using a bottom-up approach?” Our approach integrates novel synthesis, fabrication, characterization, modeling and analytics to understand molecular pathways and interfacial structure, and to bridge fundamentals to energy storage and conversion technologies by establishing new design rules.

  • Benjamin I. Chung

    Benjamin I. Chung

    Associate Professor of Urology

    Current Research and Scholarly InterestsRenal cell carcinoma and prostate cancer outcomes research and epidemiology.

  • Karlene Cimprich

    Karlene Cimprich

    Professor of Chemical and Systems Biology and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsGenomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.

  • Thomas Clandinin

    Thomas Clandinin

    Shooter Family Professor

    Current Research and Scholarly InterestsThe Clandinin lab focuses on understanding how neuronal circuits assemble and function to perform specific computations and guide behavior. Taking advantage of a rich armamentarium of genetic tools available in the fruit fly, combined with imaging, physiology and analytical techniques drawn from systems neuroscience, we examine a variety of visual circuits.