Bio-X


Showing 1-20 of 70 Results

  • Michele Calos

    Michele Calos

    Professor of Genetics, Emerita

    Current Research and Scholarly InterestsMy lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.

    We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.

    We are working on 3 forms of muscular dystrophy.

    We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells.

  • David Camarillo

    David Camarillo

    Assistant Professor of Bioengineering and, by courtesy, of Neurosurgery and of Mechanical Engineering

    BioDavid B. Camarillo is Assistant Professor of Bioengineering, (by courtesy) Mechanical Engineering and Neurosurgery at Stanford University. Dr. Camarillo holds a B.S.E in Mechanical and Aerospace Engineering from Princeton University, a Ph.D. in Mechanical Engineering from Stanford University and completed postdoctoral fellowships in Biophysics at the UCSF and Biodesign Innovation at Stanford. Dr. Camarillo worked in the surgical robotics industry at Intuitive Surgical and Hansen Medical, before launching his laboratory at Stanford in 2012. His current research focuses on precision human measurement for multiple clinical and physiological areas including the brain, heart, lungs, and reproductive system. Dr. Camarillo has been awarded the Hellman Fellowship, the Office of Naval Research Young Investigator Program award, among other honors including multiple best paper awards in brain injury and robotic surgery. His research has been funded by the NIH, NSF, DoD, as well as corporations and private philanthropy. His lab’s research has been featured on NPR, the New York Times, The Washington Post, Science News, ESPN, and TED.com as well as other media outlets aimed at education of the public.

  • Emmanuel Candes

    Emmanuel Candes

    Barnum-Simons Chair in Math and Statistics, and Professor of Statistics and, by courtesy, of Electrical Engineering

    BioEmmanuel Candès is the Barnum-Simons Chair in Mathematics and Statistics, a professor of electrical engineering (by courtesy) and a member of the Institute of Computational and Mathematical Engineering at Stanford University. Earlier, Candès was the Ronald and Maxine Linde Professor of Applied and Computational Mathematics at the California Institute of Technology. His research interests are in computational harmonic analysis, statistics, information theory, signal processing and mathematical optimization with applications to the imaging sciences, scientific computing and inverse problems. He received his Ph.D. in statistics from Stanford University in 1998.

    Candès has received several awards including the Alan T. Waterman Award from NSF, which is the highest honor bestowed by the National Science Foundation, and which recognizes the achievements of early-career scientists. He has given over 60 plenary lectures at major international conferences, not only in mathematics and statistics but in many other areas as well including biomedical imaging and solid-state physics. He was elected to the National Academy of Sciences and to the American Academy of Arts and Sciences in 2014.

  • Robson Capasso

    Robson Capasso

    Associate Professor of Otolaryngology-Head and Neck Surgery (Sleep Surgery) at the Stanford University Medical Center

    Current Research and Scholarly InterestsClinically relevant outcomes for OSA Surgery.
    Wearables and Digital Health Technologies for Sleep.
    Innovative approaches for OSA Management.
    Innovation in Sleep and Otolaryngology

  • Jan Carette

    Jan Carette

    Associate Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsOur research focuses on the identification of host genes that play critical roles in the pathogenesis of infectious agents including viruses. We use haploid genetic screens in human cells as an efficient approach to perform loss-of-function studies. Besides obtaining fundamental insights on how viruses hijack cellular processes and on host defense mechanisms, it may also facilitate the development of new therapeutic strategies.

  • Victor Carrion

    Victor Carrion

    John A. Turner Endowed Professor for Child and Adolescent Psychiatry

    Current Research and Scholarly InterestsExamines the interplay between brain development and stress vulnerability via a multi-method approach that includes psychophysiology, neuroimaging, neuroendocrinology and phenomenology. Treatment development that focuses on individual and community-based interventions for stress related conditions in children and adolescents that experience traumatic stress.

  • Dennis R Carter

    Dennis R Carter

    Professor of Mechanical Engineering, Emeritus

    Current Research and Scholarly InterestsProfessor Carter studies the influence of mechanical loading upon the growth, development, regeneration, and aging of skeletal tissues. Basic information from such studies is used to understand skeletal diseases and treatments. He has served as President of the Orthopaedic Research Society and is a Fellow of the American Institute for Medical and Biological Engineering.

  • Lynette Cegelski

    Lynette Cegelski

    Associate Professor of Chemistry and, by courtesy, of Chemical Engineering

    Current Research and Scholarly InterestsOur research program integrates chemistry, biology, and physics to investigate the assembly and function of macromolecular and whole-cell systems. The genomics and proteomics revolutions have been enormously successful in generating crucial "parts lists" for biological systems. Yet, for many fascinating systems, formidable challenges exist in building complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell factories. We are inspired by the need for new and unconventional approaches to solve these outstanding problems and to drive the discovery of new therapeutics for human disease.

    Our approach is different from the more conventional protein-structure determinations of structural biology. We employ biophysical and biochemical tools, and are designing new strategies using solid-state NMR spectroscopy to examine assemblies such as amyloid fibers, bacterial cell walls, whole cells, and biofilms. We would like to understand at a molecular and atomic level how bacteria self-assemble extracellular structures, including functional amyloid fibers termed curli, and how bacteria use such building blocks to construct organized biofilm architectures. We also employ a chemical genetics approach to recruit small molecules as tools to interrupt and interrogate the temporal and spatial events during assembly processes and to develop new strategies to prevent and treat infectious diseases. Overall, our approach is multi-pronged and provides training opportunities for students interested in research at the chemistry-biology interface.

  • Chris Chafe

    Chris Chafe

    Duca Family Professor

    BioChris Chafe is a composer, improvisor and cellist, developing much of his music alongside computer-based research. He is Director of Stanford University's Center for Computer Research in Music and Acoustics (CCRMA). At IRCAM (Paris) and The Banff Centre (Alberta), he pursued methods for digital synthesis, music performance and real-time internet collaboration. CCRMA's SoundWIRE project involves live concertizing with musicians the world over. Online collaboration software including jacktrip and research into latency factors continue to evolve. An active performer either on the net or physically present, his music reaches audiences in dozens of countries and sometimes at novel venues. A simultaneous five-country concert was hosted at the United Nations in 2009. Chafe's works are available from Centaur Records and various online media. Gallery and museum music installations are into their second decade with "musifications" resulting from collaborations with artists, scientists and MD's. Recent works include Tomato Quintet for the transLife:media Festival at the National Art Museum of China, Phasor for contrabass and Sun Shot played by the horns of large ships in the port of St. Johns, Newfoundland. Chafe premiered DiPietro's concerto, Finale, for electric cello and orchestra in 2012.

  • Page Chamberlain

    Page Chamberlain

    Professor of Geological Sciences

    Current Research and Scholarly InterestsResearch
    I use stable and radiogenic isotopes to understand Earth system history. These studies examine the link between climate, tectonics, biological, and surface processes. Projects include: 1) examining the terrestrial climate history of the Earth focusing on periods of time in the past that had CO 2-levels similar to the present and to future projections; and 2) addressing how the chemical weathering of the Earth's crust affects both the long- and short-term carbon cycle. Field areas for these studies are in the Cascades, Rocky Mountains, Sierra Nevada, the European Alps, Tibet and the Himalaya and the Southern Alps of New Zealand.

    Teaching
    I teach courses at the undergraduate and graduate level in isotope biogeochemistry, Earth system history, and the relationship between climate, surface processes and tectonics. I also teach a three-week field course each September in the Wind River Mountains of Wyoming for sophomores and GES majors. This course covers topics in environmental and geological sciences.

    Professional Activities
    Editor American Journal of Science; Co-Director Stanford Stable Isotope Biogeochemistry Laboratory (present);Chair, Department of Geological and Environmental Sciences (2004-07); Co-Director Stanford/USGS SHRIMP Ion microprobe facility (2001-04)

  • Daniel Chang

    Daniel Chang

    Sue and Bob McCollum Professor

    Current Research and Scholarly InterestsI specialize in the treatment of gastrointestinal malignancies. I am interested in developing stereotactic body radiotherapy for tumors of the liver, both primary and metastatic. I am interested in developing functional imaging as a means of determining treatment response with radiation. I am also interested in developing image-guided radiotherapy to improve radiation delivery for GI cancers to reduce toxicity and improve disease outcome.

  • Fu-Kuo Chang

    Fu-Kuo Chang

    Professor of Aeronautics and Astronautics

    BioProfessor Chang's primary research interest is in the areas of multi-functional materials and intelligent structures with particular emphases on structural health monitoring, intelligent self-sensing diagnostics, and integrated health management for space and aircraft structures as well safety-critical assets and medical devices. His specialties include sensors and sensor network development, built-in self-diagnostics,  integrated diagnostics and prognostics, damage tolerance and failure analysis for composite materials, and advanced multi-physics computational methods for multi-functional structures. Most of his work involves system integration and multi-disciplinary engineering in structural mechanics, electrical engineering, signal processing, and multi-scale fabrication of materials. His recent research topics include: Integrated health management for aircraft structures, bio-inspired intelligent sensory materials for fly-by-feel autonomous vehicles, active sensing diagnostics for composite structures, self-diagnostics for high-temperature materials, etc.

  • Howard Y. Chang, MD, PhD

    Howard Y. Chang, MD, PhD

    Virginia and D. K. Ludwig Professor of Cancer Genomics and of Genetics

    Current Research and Scholarly InterestsOur research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.

  • James Chang, MD

    James Chang, MD

    Johnson and Johnson Professor of Surgery and Professor, by courtesy, of Orthopaedic Surgery at the Palo Alto Veterans Affairs Health Care System

    Current Research and Scholarly InterestsMy role in research is to apply novel advances in tissue engineering and microsurgery to the clinical problems of hand trauma, peripheral nerve injuries, and congenital hand problems. I am interested in developing new tissues and techniques that will allow optimal reconstruction of form and function to those patients requiring reconstructive surgery.

  • Robert Chang

    Robert Chang

    Assistant Professor of Ophthalmology at the Stanford University Medical Center

    Current Research and Scholarly InterestsI'm interested in digital health, commercialization of new technology, and the biodesign education process. I have expertise in mobile health and clinical validation of new eye care devices.

  • Steven D. Chang, MD

    Steven D. Chang, MD

    Robert C. and Jeannette Powell Neurosciences Professor and, by courtesy, of Otolaryngology-Head and Neck Surgery and of Neurology

    Current Research and Scholarly InterestsClinical research includes studies in the treatment of cerebrovascular disorders, such as aneurysms and AVMs, as well as the use of radiosurgery to treat tumors and vascular malformations of the brain and spine.

    Dr. Chang is C0-Director of the Cyberknife Radiosurgery Program.

    Dr. Chang is also the head of the The Stanford Neuromolecular Innovation Program with the goal of developing new technologies to improve the diagnosis and treatment of patients affected by neurological conditions.

  • Ovijit Chaudhuri

    Ovijit Chaudhuri

    Assistant Professor of Mechanical Engineering

    BioOur group's research is focused at the intersection of mechanics and biology. We are interested in elucidating the underlying molecular mechanisms that give rise to the complex mechanical properties of cells, extracellular matrices, and tissues . Conversely, we are investigating how complex mechanical cues influence important biological processes such as cell division, differentiation, or cancer progression. Our approaches involve using force measurement instrumentation, such as atomic force microscopy, to exert and measure forces on materials and cells at the nanoscale, and the development of material systems for 3D cell culture that allow precise and independent manipulation of mechanical properties.

  • Bertha Chen, MD

    Bertha Chen, MD

    Professor of Obstetrics and Gynecology (Gynecology - Urogynecology) and, by courtesy, of Urology at the Stanford University Medical Center

    Current Research and Scholarly InterestsDr. Chen’s research examines the molecular causes of urinary incontinence and pelvic floor dysfunction. Recognizing that urinary incontinence linked to demise of smooth muscle sphincter function, she is investigating the potential use of stem cell regeneration to restore muscle capacity.