Bio-X
Showing 1-10 of 65 Results
-
Shamit Kachru
Professor of Physics and Director, Stanford Institute for Theoretical Physics, Emeritus
Current Research and Scholarly InterestsMy current research is focused in three directions:
— Mathematical aspects of string theory (with a focus on BPS state counts, black holes, and moonshine)
— Quantum field theory approaches to condensed matter physics (with a focus on physics of non-Fermi liquids)
— Theoretical biology, with a focus on evolution and ecology -
Joseph Kahn
Professor of Electrical Engineering
BioJoseph M. Kahn is a Professor of Electrical Engineering at Stanford University. His research addresses communication and imaging through optical fibers, including modulation, detection, signal processing and spatial multiplexing. He received A.B. and Ph.D. degrees in Physics from U.C. Berkeley in 1981 and 1986. From 1987-1990, he was at AT&T Bell Laboratories, Crawford Hill Laboratory, in Holmdel, NJ. He was on the Electrical Engineering faculty at U.C. Berkeley from 1990-2003. In 2000, he co-founded StrataLight Communications, which was acquired by Opnext, Inc. in 2009. He received the National Science Foundation Presidential Young Investigator Award in 1991 and is a Fellow of the IEEE.
-
A Dale Kaiser
Member, Bio-X
Current Research and Scholarly InterestsHow are genes regulated to construct a developmental program? How do signals received from other cells change the program and coordinate it for multicellular development? The approach taken by our laboratory group to answer these questions utilizes biochemistry and genetics; genetics to isolate mutants that have particular defects in development and biochemistry to determine the molecular basis of the defects. We study swarming in Myxococcus xanthus that builds fruiting bodies.
-
Anusha Kalbasi, MD
Associate Professor of Radiation Oncology (Radiation Therapy)
BioDr. Kalbasi is radiation oncologist and physician-scientist at the Stanford Cancer Institute, specializing in the treatment of patients with solid malignancies, especially sarcoma and melanoma. He actively leads early phase clinical trials related to immunotherapy and/or radiation therapy.
Dr. Kalbasi's laboratory studies cancer immunology, with a focus on manipulating the cell-intrinsic signals of immune cells and cancer cells to influence the outcomes of immunotherapy and/or radiation. The lab integrates a variety of approaches including cell and protein engineering, synthetic biology, cell signaling, genomics, and analysis of samples from patients on clinical trials. The lab is actively engaged in projects involving engineering T cell therapies (TCR, CAR, TIL), T cell engagers, cytokine therapies, innate immune agonists and radiation therapy.
Dr. Kalbasi was previously assistant professor of radiation oncology at the David Geffen School of Medicine at UCLA and chief of sarcoma radiotherapy at the UCLA Jonsson Comprehensive Cancer Center, where he was named a NextGen Star by the American Association of Cancer Research. Dr. Kalbasi’s work has been published in leading journals including Nature, Science Translational Medicine, JAMA Oncology, Lancet Oncology, Nature Cancer and Cancer Discovery. -
Julia Kaltschmidt
Associate Professor of Neurosurgery
Current Research and Scholarly InterestsThe lab’s primary research interest is to understand how specific neuronal circuits are established. We use mouse genetics, combinatorial immunochemical labeling and high-resolution laser scanning microscopy to identify, manipulate, and quantitatively analyze synaptic contacts within the complex neuronal milieu of the spinal cord and the enteric nervous system.
-
Aya Kamaya, MD
Professor of Radiology (Body Imaging)
On Leave from 02/18/2025 To 04/25/2025Current Research and Scholarly InterestsHepatobiliary imaging
Hepatocellular carcinoma
Urologic imaging
Gynecologic imaging
Thyroid imaging
Novel ultrasound technologies
Perfusion CT imaging of abdominal tumors -
Matthew Kanan
Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy
BioMatt Kanan is a Professor of Chemistry and Director of the TomKat Center for Sustainable Energy at Stanford. Matt’s research group addresses challenges in energy conversion, sustainable resource utilization, and carbon dioxide removal. Their work has led to several inventions in these areas, including process technology that utilizes CO2 to streamline chemical production, metal-free CO2 hydrogenation catalysts that improve the efficiency of sustainable fuel synthesis, membrane-free electrochemical systems to generate acid and base from water, and thermochemical methods to activate silicate rocks for CO2 removal. Matt is the co-founder and Chief Scientific Advisor for ReSource Chemical Corp., an Oakland-based start-up commercializing a process created in his group to produce performance-advantaged plastics from CO2 and inedible biomass. At the TomKat Center, Matt directs programs that help Stanford students and researchers develop and commercialize innovations that impact energy and sustainability. Prior to joining the Stanford faculty in 2009, Matt did his Ph.D. studies in organic chemistry at Harvard and postdoctoral research at MIT in inorganic chemistry. He earned his B.A. in chemistry from Rice University in 2000.
-
Peter Kao
Associate Professor of Medicine (Pulmonary and Critical Care Medicine)
Current Research and Scholarly InterestsOur research program has several active projects:
1.) Pulmonary Vascular Disease Simvastatin reversed experimental pulmonary hypertension, and is safe for treatment of patients. Blinded clinical trials of efficacy are in progress.
2.) Lung inflammation and regeneration (stem cells)
3.) Lung surfactant rheology and oxidative stress
4.) Gene regulation by RNA binding proteins, NF45 and NF90 through transcriptional and posttranscriptional mechanisms -
Ioannis Karakikes
Associate Professor (Research) of Cardiothoracic Surgery
Current Research and Scholarly InterestsThe Karakikes Lab aims to uncover fundamental new insights into the molecular mechanisms and functional consequences of pathogenic mutations associated with familial cardiovascular diseases.
-
Hemamala Karunadasa
J.G. Jackson and C.J. Wood Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy
BioProfessor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.
Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.
Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.
Please visit the lab website for more details and recent news.