Bio-X


Showing 981-990 of 994 Results

  • Jong H. Yoon

    Jong H. Yoon

    Professor of Psychiatry and Behavioral Sciences (Public Mental Health & Population Sciences)

    Current Research and Scholarly InterestsMy research seeks to discover the brain mechanisms responsible for schizophrenia and to translate this knowledge into the clinic to improve how we diagnose and treat this condition. Towards these ends, our group has been developing cutting-edge neuroimaging tools to identify neurobiological abnormalities and test novel systems-level disease models of psychosis and schizophrenia directly in individuals with these conditions.

    We have been particularly interested in the role of neocortical-basal ganglia circuit dysfunction. A working hypothesis is that some of the core symptoms of schizophrenia are attributable to impairments in neocortical function that results in disconnectivity with components of the basal ganglia and dysregulation of their activity. The Yoon Lab has developed new high-resolution functional magnetic resonance imaging methods to more precisely measure the function of basal ganglia components, which given their small size and location deep within the brain has been challenging. This includes ways to measure the activity of nuclei that store and control the release of dopamine throughout the brain, a neurochemical that is one of the most important factors in the production of psychosis in schizophrenia and other neuropsychiatric conditions.

  • Bo Yu, MD

    Bo Yu, MD

    Assistant Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility)

    Current Research and Scholarly InterestsDr. Yu’s lab is interested in ovarian physiology and pathology, as well as assisted reproductive technologies (ART).

  • Greg Zaharchuk

    Greg Zaharchuk

    Professor of Radiology (Neuroimaging and Neurointervention)

    Current Research and Scholarly InterestsImproving medical image quality using deep learning artificial intelligence
    Imaging of cerebral hemodynamics with MRI and CT
    Noninvasive oxygenation measurement with MRI
    Clinical imaging of cerebrovascular disease
    Imaging of cervical artery dissection
    MR/PET in Neuroradiology
    Resting-state fMRI for perfusion imaging and stroke

  • Jamil Zaki

    Jamil Zaki

    Associate Professor of Psychology

    Current Research and Scholarly InterestsMy research focuses on the cognitive and neural bases of social behavior, and in particular on how people respond to each other's emotions (empathy), why they conform to each other (social influence), and why they choose to help each other (prosociality).

  • Richard Zare

    Richard Zare

    Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics

    Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Christopher K. Zarins

    Christopher K. Zarins

    Walter Clifford Chidester and Elsa Rooney Chidester Professor of Surgery, Emeritus

    Current Research and Scholarly InterestsHemodynamic factors in atherosclerosis, pathogenesis of, aortic aneurysms, carotid plaque localization and complication, anastomotic intimal hyperplasia, vascular biology of artery wall, computational fluid dynamics as applied to blood flow and vascular disease.

  • James L. Zehnder, M.D.

    James L. Zehnder, M.D.

    Professor of Pathology (Research) and of Medicine (Hematology)

    Current Research and Scholarly InterestsOur laboratory focuses on translational research in 2 main areas - genomic approaches to diagnosis and minimal residual disease testing for patients with cancer, and molecular basis of disorders of thrombosis and hemostasis. My clinical focus is in molecular pathology, diagnosis and treatment of disorders of hemostasis and thrombosis and general hematology.

  • Michael Zeineh

    Michael Zeineh

    Associate Professor of Radiology (Neuroimaging and Neurointervention)

    BioDr. Michael Zeineh began his journey into clinical neuroscience when he received a B.S. with Honors in Biology at Caltech in 1995. He next went to UCLA's M.D.-Ph.D. program, where he studied in the laboratory of Dr. Susan Bookheimer. His Ph.D. thesis examined memory formation using advanced hippocampal subfield functional MRI in normals as well as in aging. After an internal medicine internship also at UCLA, he went on to further study medical imaging by entering radiology residency at Stanford. Finding his enduring passion with neuroimaging, he pursued neuroradiology fellowship also at Stanford, and became faculty as of 2010. He spearheads many initiatives in advanced clinical imaging at Stanford. Simultaneously, he runs a lab with the goal of discovering new imaging abnormalities in neurodegenerative disorders, with a focus on the hippocampal formation using in vivo and ex vivo methods.

  • Jamie Zeitzer

    Jamie Zeitzer

    Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)

    Current Research and Scholarly InterestsDr. Zeitzer is a circadian physiologist specializing in the understanding of the impact of light on circadian rhythms and other aspects of non-image forming light perception.
    He examines the manner in which humans respond to light and ways to manipulate this responsiveness, with direct application to jet lag, shift work, and altered sleep timing in teens. Dr. Zeitzer has also pioneered the use of actigraphy in the determination of epiphenomenal markers of psychiatric disorders.

  • Renee Zhao

    Renee Zhao

    Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering

    BioRuike Renee Zhao is an Assistant Professor of Mechanical Engineering at Stanford University where she directs the Soft Intelligent Materials Laboratory. Renee received her BS degree from Xi'an Jiaotong University in 2012, and her MS and PhD degrees from Brown University in 2014 and 2016, respectively. She was a postdoc associate at MIT during 2016-2018 prior to her appointment as an Assistant Professor in the Department of Mechanical and Aerospace Engineering at The Ohio State University from 2018 to 2021.
    Renee’s research concerns the development of stimuli-responsive soft composites for multifunctional robotic systems with integrated shape-changing, assembling, sensing, and navigation. By combining mechanics, polymer engineering, and advanced material manufacturing techniques, the functional soft composites enable applications in soft robotics, miniaturized biomedical devices, flexible electronics, deployable and morphing structures.
    Renee is a recipient of the 2022 ASME Henry Hess Early Career Publication Award, 2022 ASME Pi Tau Sigma Gold Medal, 2021 ASME Applied Mechanics Division Journal of Applied Mechanics Award, 2020 NSF Career Award, and 2018 ASME Applied Mechanics Division Haythornthwaite Research Initiation Award.