Sarafan ChEM-H
Showing 91-100 of 204 Results
-
KC Huang
Professor of Bioengineering and of Microbiology and Immunology
Current Research and Scholarly InterestsHow do cells determine their shape and grow?
How do molecules inside cells get to the right place at the right time?
Our group tries to answer these questions using a systems biology approach, in which we integrate interacting networks of protein and lipids with the physical forces determined by the spatial geometry of the cell. We use theoretical and computational techniques to make predictions that we can verify experimentally using synthetic, chemical, or genetic perturbations. -
Ngan F. Huang
Associate Professor of Cardiothoracic Surgery (Cardiothoracic Surgery Research) and, by courtesy, of Chemical Engineering
Current Research and Scholarly InterestsDr. Huang's laboratory aims to understand the chemical and mechanical interactions between extracellular matrix (ECM) proteins and pluripotent stem cells that regulate vascular and myogenic differentiation. The fundamental insights of cell-matrix interactions are applied towards stem cell-based therapies with respect to improving cell survival and regenerative capacity, as well as engineered vascularized tissues for therapeutic transplantation.
-
Possu Huang
Assistant Professor of Bioengineering
Current Research and Scholarly InterestsProtein design: molecular engineering, method development and novel therapeutics
-
Adrian Hugenmatter
Director of Protein Engineering
BioDr. Adrian Hugenmatter joined ChEM-H in 2021 and is leading the Protein Therapeutics Knowledge Center. Dr. Hugenmatter obtained his PhD in the laboratory of Prof. Donald Hilvert at the Swiss Federal Institute of Zurich (ETH Zurich), where he gained his first experience in enzymology, antibody engineering and directed evolution. Fascinated by protein engineering, he joined the laboratory of Prof. Dan Tawfik at the Weizmann Institute of Science (Israel), where he worked on molecular evolution. Dr. Hugenmatter then spent 11 years as a research scientist and team leader at Roche. During that time he developed and optimized several antibody lead candidates for therapeutic application in Oncology and Neuroscience. All along his career, Dr. Hugenmatter was and still is intrigued by the question how a ideal drug must look like to give the maximal benefit to the patient.
-
Paul S Humphries
Alliance Director, Sarafan ChEM-H
Current Role at StanfordAlliance Director, Stanford Innovative Medicines Accelerator (IMA)
-
Juliana Idoyaga
Assistant Professor of Microbiology and Immunology
Current Research and Scholarly InterestsThe Idoyaga Lab is focused on the function and biology of dendritic cells, which are specialized antigen-presenting cells that initiate and modulate our body’s immune responses. Considering their importance in orchestrating the quality and quantity of immune responses, dendritic cells are an indisputable target for vaccines and therapies.
Dendritic cells are not one cell type, but a network of cells comprised of many subsets or subpopulations with distinct developmental pathways and tissue localization. It is becoming apparent that each dendritic cell subset is different in its capacity to induce and modulate specific types of immune responses; however, there is still a lack of resolution and deep understanding of dendritic cell subset functional specialization. This gap in knowledge is an impediment for the rational design of immune interventions. Our research program focuses on advancing our understanding of mouse and human dendritic cell subsets, revealing their endowed capacity to induce distinct types of immune responses, and designing novel strategies to exploit them for vaccines and therapies. -
Peter K. Jackson
Professor of Microbiology and Immunology (Baxter Labs) and of Pathology
Current Research and Scholarly InterestsCell cycle and cyclin control of DNA replication .
-
Christine Jacobs-Wagner
Dennis Cunningham Professor, Professor of Biology and of Microbiology and Immunology
BioChristine Jacobs-Wagner is a Dennis Cunningham Professor in the Department of Biology and the ChEM-H Institute at Stanford University. She is interested in understanding the fundamental mechanisms and principles by which cells, and, in particular, bacterial cells, are able to multiple. She received her PhD in Biochemistry in 1996 from the University of Liège, Belgium where she unraveled a molecular mechanism by which some bacterial pathogens sense and respond to antibiotics attack to achieve resistance. For this work, she received multiple awards including the 1997 GE & Science Prize for Young Life Scientists. During her postdoctoral work at Stanford Medical School, she demonstrated that bacteria can localize regulatory proteins to specific intracellular regions to control signal transduction and the cell cycle, uncovering a new, unsuspected level of bacterial regulation.
She started her own lab at Yale University in 2001. Over the years, her group made major contributions in the emerging field of bacterial cell biology and provided key molecular insights into the temporal and spatial mechanisms involved in cell morphogenesis, cell polarization, chromosome segregation and cell cycle control. For her distinguished work, she received the Pew Scholars award from the Pew Charitable Trust, the Woman in Cell Biology Junior award from the American Society of Cell Biology and the Eli Lilly award from the American Society of Microbiology. She held the Maxine F. Singer and William H. Fleming professor chairs at Yale. She was elected to the Connecticut academy of Science, the American Academy of Microbiology and the National Academy of Sciences. She has been an investigator of the Howard Hughes Medical Institute since 2008.
Her lab moved to Stanford in 2019. Current research examines the general principles and spatiotemporal mechanisms by which bacterial cells replicate, using Caulobacter crescentus and Escherichia coli as models. Recently, the Jacobs-Wagner lab expanded their interests to the Lyme disease agent Borrelia burgdorferi, revealing unsuspected ways by which this pathogen grows and causes disease