Sarafan ChEM-H


Showing 181-200 of 216 Results

  • Naima G. Sharaf

    Naima G. Sharaf

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in the lab bridges biology, microbiology, and immunology to translate lipoprotein research into therapeutics

  • Carla Shatz

    Carla Shatz

    Sapp Family Provostial Professor, The Catherine Holman Johnson Director of Stanford Bio-X and Professor of Biology and of Neurobiology

    Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.

  • Mark Smith

    Mark Smith

    Head of Medicinal Chemistry

    BioDr. Mark Smith joined Stanford ChEM-H in May 2013 as the Head of the Medicinal Chemistry Knowledge Center. He graduated with a Ph.D. from the laboratory of Prof. Richard Stoodley at the University of Manchester Institute for Science and Technology (UMIST), where his research focused on the application of Lewis acid catalyzed hetero Diels-Alder reactions to the synthesis of novel disaccharide structures. In 2000, Dr. Smith joined the research laboratory of Prof. David Crich at the University of Illinois at Chicago. Here his research focused on the generation of new reagents for the synthesis of beta-mannosides from thioglycosides. From 2002 to 2013, Dr. Smith worked as a medicinal chemist in Roche’s research facilities both in Palo Alto, CA and then Nutley, NJ, where he specialized in antiviral research.

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • Edward I. Solomon

    Edward I. Solomon

    Monroe E. Spaght Professor of Chemistry and Professor of Photon Science
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.

  • David Solow-Cordero

    David Solow-Cordero

    Associate Director, High-Throughput Screening, Innovative Medicines Accelerator (IMA)

    Current Role at StanfordAssociate Director, High-Throughput Screening Knowledge Center, , Sarafan ChEM-H and Innovative Medicine Accelerator (IMA)

    This high-throughput screening (HTS) laboratory allows Stanford researchers and others to discover novel modulators of targets that otherwise would not be practical in industry. The center incorporates instrumentation (purchased with NCRR NIH Instrumentation grant numbers S10RR019513, S10RR026338, S10OD025004, and S10OD026899), databases, compound libraries, and personnel whose previous sole domains were in industry.

    Among our instrumentation are a fully automated Molecular Devices ImageXpress Micro Confocal High-Content fluorescence microplate imager, with live cell, fluidics and phase contrast options, an Echo 655 Acoustic Dispense, a Thermo integrated HTS robotic system, a Caliper Life Sciences SciClone ALH3000 and an Agilent Bravo microplate liquid handler, and the BMG Clariostarplus, Tecan Infinite M1000 and M1000 PRO and Molecular Devices FlexStation II 384 fluorescence, luminescence and absorbance multimode microplate readers.

    We have over 180,000 small molecules for compound screens, 15,000 cDNAs for genomic screens, and whole genome siRNA libraries targeting the human genome (the siARRAY whole human genome siRNA library from Dharmacon, targeting 21,000 human genes) and the mouse genome (Qiagen mouse whole genome siRNA set V1 against 22,124 genes).

    The HTSKC main screening lab is located in ChEM-H W008, the cell-based assay development lab is located in CCSR Room 0133-North Wing, between the Transgenic Mouse Facility, and the Stanford Genomics Facility.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.

  • Katrin J Svensson

    Katrin J Svensson

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsMolecular metabolism
    Protein biochemistry
    Cell biology and function
    Animal physiology

  • James Swartz

    James Swartz

    James H. Clark Professor in the School of Engineering and Professor of Chemical Engineering and of Bioengineering

    Current Research and Scholarly InterestsProgram Overview

    The world we enjoy, including the oxygen we breathe, has been beneficially created by biological systems. Consequently, we believe that innovative biotechnologies can also serve to help correct a natural world that non-natural technologies have pushed out of balance. We must work together to provide a sustainable world system capable of equitably improving the lives of over 10 billion people.
    Toward that objective, our program focuses on human health as well as planet health. To address particularly difficult challenges, we seek to synergistically combine: 1) the design and evolution of complex protein-based nanoparticles and enzymatic systems with 2) innovative, uniquely capable cell-free production technologies.
    To advance human health we focus on: a) achieving the 120 year-old dream of producing “magic bullets”; smart nanoparticles that deliver therapeutics or genetic therapies only to specific cells in our bodies; b) precisely designing and efficiently producing vaccines that mimic viruses to stimulate safe and protective immune responses; and c) providing a rapid point-of-care liquid biopsy that will count and harvest circulating tumor cells.
    To address planet health we are pursuing biotechnologies to: a) inexpensively use atmospheric CO2 to produce commodity biochemicals as the basis for a new carbon negative chemical industry, and b) mitigate the intermittency challenges of photovoltaic and wind produced electricity by producing hydrogen either from biomass sugars or directly from sunlight.
    More than 25 years ago, Professor Swartz began his pioneering work to develop cell-free biotechnologies. The new ability to precisely focus biological systems toward efficiently addressing new, “non-natural” objectives has proven tremendously useful as we seek to address the crucial and very difficult challenges listed above. Another critical feature of the program is the courage (or naivete) to approach important objectives that require the development and integration of several necessary-but- not-sufficient technology advances.

  • Sindy Tang

    Sindy Tang

    Associate Professor of Mechanical Engineering, Senior Fellow at the Woods Institute for the Environment and Professor, by courtesy, of Radiology and of Bioengineering
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsThe long-term goal of Dr. Tang's research program is to harness mass transport in microfluidic systems to accelerate precision medicine and material design for a future with better health and environmental sustainability.

    Current research areas include: (I) Physics of droplets in microfluidic systems, (II) Interfacial mass transport and self-assembly, and (III) Applications in food allergy, single-cell wound repair, and the bottom-up construction of synthetic cell and tissues in close collaboration with clinicians and biochemists at the Stanford School of Medicine, UCSF, and University of Michigan.

    For details see https://web.stanford.edu/group/tanglab/

  • Hawa Racine Thiam

    Hawa Racine Thiam

    Assistant Professor of Bioengineering and of Microbiology and Immunology

    Current Research and Scholarly InterestsCellular Biophysical Mechanisms of Innate Immune Cells Functions

  • Alice Ting

    Alice Ting

    Professor of Genetics, of Biology and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsWe develop chemogenetic and optogenetic technologies for probing and manipulating protein networks, cellular RNA, and the function of mitochondria and the mammalian brain. Our technologies draw from protein engineering, directed evolution, chemical biology, organic synthesis, high-resolution microscopy, genetics, and computational design.

  • Soichi Wakatsuki

    Soichi Wakatsuki

    Professor of Photon Science and of Structural Biology

    Current Research and Scholarly InterestsUbiquitin signaling: structure, function, and therapeutics
    Ubiquitin is a small protein modifier that is ubiquitously produced in the cells and takes part in the regulation of a wide range of cellular activities such as gene transcription and protein turnover. The key to the diversity of the ubiquitin roles in cells is that it is capable of interacting with other cellular proteins either as a single molecule or as different types of chains. Ubiquitin chains are produced through polymerization of ubiquitin molecules via any of their seven internal lysine residues or the N-terminal methionine residue. Covalent interaction of ubiquitin with other proteins is known as ubiquitination which is carried out through an enzymatic cascade composed of the ubiquitin-activating (E1), ubiquitin-conjugating (E2), and ubiquitin ligase (E3) enzymes. The ubiquitin signals are decoded by the ubiquitin-binding domains (UBDs). These domains often specifically recognize and non-covalently bind to the different ubiquitin species, resulting in distinct signaling outcomes.
    We apply a combination of the structural (including protein crystallography, small angle x-ray scattering, cryo-electron microscopy (Cryo-EM) etc.), biocomputational and biochemical techniques to study the ubiquitylation and deubiquitination processes, and recognition of the ubiquitin chains by the proteins harboring ubiquitin-binding domains. Current research interests including SARS-COV2 proteases and their interactions with polyubiquitin chains and ubiquitin pathways in host cell responses, with an ultimate goal of providing strategies for effective therapeutics with reduced levels of side effects.

    Protein self-assembly processes and applications.
    The Surface layers (S-layers) are crystalline protein coats surrounding microbial cells. S-layer proteins (SLPs) regulate their extracellular, self-assembly by crystallizing when exposed to an environmental trigger. We have demonstrated that the Caulobacter crescentus SLP readily crystallizes into sheets both in vivo and in vitro via a calcium-triggered multistep assembly pathway. Observing crystallization using a time course of Cryo-EM imaging has revealed a crystalline intermediate wherein N-terminal nucleation domains exhibit motional dynamics with respect to rigid lattice-forming crystallization domains. Rate enhancement of protein crystallization by a discrete nucleation domain may enable engineering of kinetically controllable self-assembling 2D macromolecular nanomaterials. In particular, this is inspiring designing robust novel platform for nano-scale protein scaffolds for structure-based drug design and nano-bioreactor design for the carbon-cycling enzyme pathway enzymes. Current research focuses on development of nano-scaffolds for high throughput in vitro assays and structure determination of small and flexible proteins and their interaction partners using Cryo-EM, and applying them to cancer and anti-viral therapeutics.

    Multiscale imaging and technology developments.
    Multimodal, multiscale imaging modalities will be developed and integrated to understand how molecular level events of key enzymes and protein network are connected to cellular and multi-cellular functions through intra-cellular organization and interactions of the key machineries in the cell. Larger scale organization of these proteins will be studied by solution X-ray scattering and Cryo-EM. Their spatio-temporal arrangements in the cell organelles, membranes, and cytosol will be further studied by X-ray fluorescence imaging and correlated with cryoEM and super-resolution optical microscopy. We apply these multiscale integrative imaging approaches to biomedical, and environmental and bioenergy research questions with Stanford, DOE national labs, and other domestic and international collaborators.