Sarafan ChEM-H


Showing 111-120 of 226 Results

  • Chaitan Khosla

    Chaitan Khosla

    Wells H. Rauser and Harold M. Petiprin Professor and Professor of Chemistry and, by courtesy, of Biochemistry

    Current Research and Scholarly InterestsResearch in this laboratory focuses on problems where deep insights into enzymology and metabolism can be harnessed to improve human health.

    For the past two decades, we have studied and engineered enzymatic assembly lines called polyketide synthases that catalyze the biosynthesis of structurally complex and medicinally fascinating antibiotics in bacteria. An example of such an assembly line is found in the erythromycin biosynthetic pathway. Our current focus is on understanding the structure and mechanism of this polyketide synthase. At the same time, we are developing methods to decode the vast and growing number of orphan polyketide assembly lines in the sequence databases.

    For more than a decade, we have also investigated the pathogenesis of celiac disease, an autoimmune disorder of the small intestine, with the goal of discovering therapies and related management tools for this widespread but overlooked disease. Ongoing efforts focus on understanding the pivotal role of transglutaminase 2 in triggering the inflammatory response to dietary gluten in the celiac intestine.

  • Peter S. Kim

    Peter S. Kim

    Virginia and D. K. Ludwig Professor of Biochemistry

    Current Research and Scholarly InterestsOur research focuses on developing new strategies for vaccine creation. We also aim to generate vaccines targeting infectious agents that have eluded efforts to date. We integrate experimental approaches with protein language models to guide artificial evolution and enable efficient antibody and protein engineering. Our interdisciplinary approach aims to address critical global health challenges.

  • Karla Kirkegaard

    Karla Kirkegaard

    Violetta L. Horton Professor and Professor of Microbiology and Immunology

    Current Research and Scholarly InterestsThe biochemistry of RNA-dependent RNA polymerase function, the cell biology of the membrane rearrangements induced by positive-strand RNA virus infection of human cells, and the genetics of RNA viruses, which, with their high error rates, live at the brink of error catastrophe, are investigated in the Kirkegaard laboratory.

  • Bruce Koch, Ph.D.

    Bruce Koch, Ph.D.

    Director of High-Throughput Screening

    Current Role at StanfordHead, ChEM-H/CSB High Throughput Screening Knowledge Center (HTSKC)
    Staff Co-lead, IMA HTS Module

    Adviser to the SPARK Program

  • Pallavi Kompella

    Pallavi Kompella

    Basic Life Research Scientist, Innovative Medicines Accelerator (IMA)

    BioPh.D. Pharmaceutical Sciences - American Foundation for Pharmaceutical Education Doctoral Fellow, The University of Texas at Austin
    Fulbright U.S. Postdoctoral Scholar, Biomedical Research Institute of Malaga, Spain

  • Eric Kool

    Eric Kool

    George A. and Hilda M. Daubert Professor of Chemistry

    Current Research and Scholarly Interests• Design of cell-permeable reagents for profiling, modifying, and controlling RNAs
    • Developing fluorescent probes of DNA repair pathways, with applications in cancer, aging, and neurodegenerative disease
    • Discovery and development of small-molecule modulators of DNA repair enzymes, with focus on cancer and inflammation

  • Tobias Lanz

    Tobias Lanz

    Assistant Professor of Medicine (Immunology and Rheumatology)

    BioTobias Lanz, MD is an Assistant Professor at the Institute for Immunity, Transplantation, and Infection and the Division of Immunology and Rheumatology at Stanford. His research focuses on B cell biology in neuroimmunological diseases and rheumatic diseases with neurological manifestations. He uses high-throughput screening technologies, and methods from structural and cell biology to identify new autoantigens and to understand how certain self-reactive B cells escape tolerance mechanisms. He is particularly interested in molecular mechanisms that explain the association between Epstein Barr Virus (EBV) and autoimmunity.
    Tobias went to medical school at the Eberhard Karls University in Tübingen, Germany and at the University College of London. He wrote his MD thesis at Dr. Michael Platten's laboratory at the Hertie Institute for Clinical Brain Research in Tübingen, Germany before joining Dr. Lawrence Steinman’s neuroimmunological laboratory at Stanford as a research scholar. After medical school he pursued his scientific and clinical training at the German Cancer Research Center (DKFZ) and the Department of Neurology at the University Hospital in Heidelberg, Germany. In 2015 he joined Dr. William Robinson’s lab at Stanford, where he investigated environmental triggers of autoimmunity, including viruses and milk consumption. In his most recent work, he characterized the B cell repertoire in the spinal fluid of patients with multiple sclerosis (MS) and identified molecular mimicry between EBV EBNA1 and the glial cellular adhesion molecule GlialCAM as a driver of neuroinflammation (Lanz et al., Nature, 2022). His long term objective is to leverage these newly discovered mechanistic insights to develop next-generation biomarkers and therapeutics for autoimmune diseases.