Sarafan ChEM-H


Showing 101-120 of 139 Results

  • Lei (Stanley) Qi

    Lei (Stanley) Qi

    Associate Professor of Bioengineering

    BioDr. Lei (Stanley) Qi is Associate Professor of Bioengineering, Sarafan ChEM-H, and a Chan Zuckerberg Biohub Investigator. Dr. Qi is a principal contributor to the development of CRISPR technologies for genome engineering beyond gene editing. His lab created the first nuclease-deactivated Cas9 (dCas9) for targeted gene regulation in cells. His lab has invented a CRISPR toolbox for engineering the epigenome, including CRISPRi and CRISPRa for targeted gene repression and activation, epigenome editing, LiveFISH for real-time DNA/RNA imaging, CRISPR-GO for 3D genome manipulation, CasMINI as a compact CRISPR system for gene therapy, hyperCas12a for multi-gene engineering, and CRISPR antivirals aimed at treating broad RNA viruses.

    Dr. Qi obtained B.S. in Physics and Math from Tsinghua University in 2005, and Ph.D. in Bioengineering from the University of California, Berkeley in 2012. He was a Systems Biology Faculty Fellow at UCSF between 2012-2014, and joined Stanford faculty in 2014. His research focuses on mammalian synthetic biology, epigenetic engineering, immune cell engineering, directed evolution, and novel approaches for gene therapy.

  • Jianghong Rao

    Jianghong Rao

    Professor of Radiology (Molecular Imaging Program at Stanford) and, by courtesy, of Chemistry

    Current Research and Scholarly InterestsProbe chemistry and nanotechnology for molecular imaging and diagnostics

  • Kacper Rogala

    Kacper Rogala

    Assistant Professor of Structural Biology and of Chemical and Systems Biology

    Current Research and Scholarly InterestsOur team is fascinated by how cells make growth decisions — to grow or not to grow. In order to grow, cells require nutrients, and we are unraveling how cells use specialized protein sensors and transporters to sense and traffic nutrients in between various compartments. We use approaches from structural biology, chemical biology, biophysics, biochemistry, and cell biology — to reveal the mechanisms of basic biological processes, and we develop chemical probes that modulate them.

  • Florentine Rutaganira

    Florentine Rutaganira

    Assistant Professor of Biochemistry and of Developmental Biology

    BioDr. Rutaganira uses choanoflagellates—the closest living single-celled relatives to animals—to study the origin of animal cell communication. Dr. Rutaganira applies chemical, genetic, and cell biological tools to probe choanoflagellate cell-cell communication, with implications for understanding not only animal cell signaling, but also the origin of multicellularity in animals.

  • Julien Sage

    Julien Sage

    Elaine and John Chambers Professor of Pediatric Cancer and Professor of Genetics
    On Partial Leave from 04/22/2024 To 06/24/2024

    Current Research and Scholarly InterestsWe investigate the mechanisms by which normal cells become tumor cells, and we combine genetics, genomics, and proteomics approaches to investigate the differences between the proliferative response in response to injury and the hyperproliferative phenotype of cancer cells and to identify novel therapeutic targets in cancer cells.

  • Kathleen M. Sakamoto

    Kathleen M. Sakamoto

    Shelagh Galligan Professor in the School of Medicine

    Current Research and Scholarly InterestsMy research focuses on the molecular pathways that regulate normal and aberrant blood cell development, including acute leukemia and bone marrow failure syndromes. We are also studying novel drugs for treatment of cancer.

  • Julia Salzman

    Julia Salzman

    Associate Professor of Biomedical Data Science, of Biochemistry and, by courtesy, of Statistics and of Biology

    Current Research and Scholarly Interestsstatistical computational biology focusing on splicing, cancer and microbes

  • Juan G. Santiago

    Juan G. Santiago

    Charles Lee Powell Foundation Professor

    Current Research and Scholarly Interestshttp://microfluidics.stanford.edu/Projects/Projects.html

  • Serena Sanulli

    Serena Sanulli

    Assistant Professor of Genetics

    Current Research and Scholarly InterestsWe study the organizing principles of the genome and how these principles regulate cell identity and developmental switches. We combine Biochemistry and Biophysical methods such as NMR and Hydrogen-Deuterium Exchange-MS with Cell Biology, and Genetics to explore genome organization across length and time scales and understand how cells leverage the diverse biophysical properties of chromatin to regulate genome function.

  • Ansuman Satpathy

    Ansuman Satpathy

    Assistant Professor of Pathology

    Current Research and Scholarly InterestsOur lab works at the interface of immunology, cancer biology, and genomics to study cellular and molecular mechanisms of the immune response to cancer. In particular, we are leveraging high-throughput genomic technologies to understand the dynamics of the tumor-specific T cell response to cancer antigens and immunotherapies (checkpoint blockade, CAR-T cells, and others). We are also interested in understanding the impact of immuno-editing on the heterogeneity and clonal evolution of cancer.

    We previously developed genome sequencing technologies that enable epigenetic studies in primary human immune cells from patients: 1) 3D enhancer-promoter interaction profiling (Nat Genet, 2017), 2) paired epigenome and T cell receptor (TCR) profiling in single cells (Nat Med, 2018), 3) paired epigenome and CRISPR profiling in single cells (Cell, 2019), and high-throughput single-cell ATAC-seq in droplets (Nature Biotech, 2019). We used these tools to study fundamental principles of the T cell response to cancer immunotherapy (PD-1 blockade) directly in cancer patient samples (Nature Biotech, 2019; Nat Med, 2019).

  • Elizabeth Sattely

    Elizabeth Sattely

    Associate Professor of Chemical Engineering

    BioPlants have an extraordinary capacity to harvest atmospheric CO2 and sunlight for the production of energy-rich biopolymers, clinically used drugs, and other biologically active small molecules. The metabolic pathways that produce these compounds are key to developing sustainable biofuel feedstocks, protecting crops from pathogens, and discovering new natural-product based therapeutics for human disease. These applications motivate us to find new ways to elucidate and engineer plant metabolism. We use a multidisciplinary approach combining chemistry, enzymology, genetics, and metabolomics to tackle problems that include new methods for delignification of lignocellulosic biomass and the engineering of plant antibiotic biosynthesis.

  • Nirao Shah

    Nirao Shah

    Professor of Psychiatry and Behavioral Sciences (Major Laboratories and Clinical Translational Neurosciences Incubator), of Neurobiology and, by courtesy, of Obstetrics and Gynecology

    Current Research and Scholarly InterestsWe study how our brains generate social interactions that differ between the sexes. Such gender differences in behavior are regulated by sex hormones, experience, and social cues. Accordingly, we are characterizing how these internal and external factors control gene expression and neuronal physiology in the two sexes to generate behavior. We are also interested in understanding how such sex differences in the healthy brain translate to sex differences in many neuro-psychiatric illnesses.

  • Lucy Shapiro

    Lucy Shapiro

    Virginia and D. K. Ludwig Professor, Emerita

    Current Research and Scholarly InterestsA basic question in developmental biology involves the mechanisms used to generate the three-dimensional organization of a cell from a one-dimensional genetic code. Our goal is to define these mechanisms using both molecular genetics and biochemistry.

  • Naima G. Sharaf

    Naima G. Sharaf

    Assistant Professor of Biology and, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsResearch in the lab bridges biology, microbiology, and immunology to translate lipoprotein research into therapeutics

  • Carla Shatz

    Carla Shatz

    Sapp Family Provostial Professor, The Catherine Holman Johnson Director of Stanford Bio-X and Professor of Biology and of Neurobiology

    Current Research and Scholarly InterestsThe goal of research in the Shatz Laboratory is to discover how brain circuits are tuned up by experience during critical periods of development both before and after birth by elucidating cellular and molecular mechanisms that transform early fetal and neonatal brain circuits into mature connections. To discover mechanistic underpinnings of circuit tuning, the lab has conducted functional screens for genes regulated by neural activity and studied their function for vision, learning and memory.

  • Mark Smith

    Mark Smith

    Head of Medicinal Chemistry

    BioDr. Mark Smith joined Stanford ChEM-H in May 2013 as the Head of the Medicinal Chemistry Knowledge Center. He graduated with a Ph.D. from the laboratory of Prof. Richard Stoodley at the University of Manchester Institute for Science and Technology (UMIST), where his research focused on the application of Lewis acid catalyzed hetero Diels-Alder reactions to the synthesis of novel disaccharide structures. In 2000, Dr. Smith joined the research laboratory of Prof. David Crich at the University of Illinois at Chicago. Here his research focused on the generation of new reagents for the synthesis of beta-mannosides from thioglycosides. From 2002 to 2013, Dr. Smith worked as a medicinal chemist in Roche’s research facilities both in Palo Alto, CA and then Nutley, NJ, where he specialized in antiviral research.

  • Hyongsok Tom  Soh

    Hyongsok Tom Soh

    Professor of Radiology (Early Detection), of Electrical Engineering, of Bioengineering and, by courtesy, of Chemical Engineering

    BioDr. Soh received his B.S. with a double major in Mechanical Engineering and Materials Science with Distinction from Cornell University and his Ph.D. in Electrical Engineering from Stanford University. From 1999 to 2003, Dr. Soh served as the technical manager of MEMS Device Research Group at Bell Laboratories and Agere Systems. He was a faculty member at UCSB before joining Stanford in 2015. His current research interests are in analytical biotechnology, especially in high-throughput screening, directed evolution, and integrated biosensors.

  • Edward I. Solomon

    Edward I. Solomon

    Monroe E. Spaght Professor of Chemistry and Professor of Photon Science
    On Leave from 04/01/2024 To 06/30/2024

    Current Research and Scholarly InterestsProf. Solomon's work spans physical-inorganic, bioinorganic, and theoretical-inorganic chemistry, focusing on spectroscopic elucidation of the electronic structure of transition metal complexes and its contribution to reactivity. He has advanced our understanding of metal sites involved in electron transfer, copper sites involved in O2 binding, activation and reduction to water, structure/function correlations over non-heme iron enzymes, and correlation of biological to heterogeneous catalysis.

  • Aaron F. Straight

    Aaron F. Straight

    Pfeiffer and Herold Families Professor, Professor of Biochemistry and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly InterestsWe study the biology of chromosomes. Our research is focused on understanding how chromosomal domains are specialized for unique functions in chromosome segregation, cell division and cell differentiation. We are particularly interested in the genetic and epigenetic processes that govern vertebrate centromere function, in the organization of the genome in the eukaryotic nucleus and in the roles of RNAs in the regulation of chromosome structure.