Independent Labs, Institutes, and Centers (Dean of Research)
Showing 11-20 of 103 Results
-
Matthew Kanan
Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy
BioMatt Kanan is a Professor of Chemistry and Director of the TomKat Center for Sustainable Energy at Stanford. Matt’s research group addresses challenges in energy conversion, sustainable resource utilization, and carbon dioxide removal. Their work has led to several inventions in these areas, including process technology that utilizes CO2 to streamline chemical production, metal-free CO2 hydrogenation catalysts that improve the efficiency of sustainable fuel synthesis, membrane-free electrochemical systems to generate acid and base from water, and thermochemical methods to activate silicate rocks for CO2 removal. Matt is the co-founder and Chief Scientific Advisor for ReSource Chemical Corp., an Oakland-based start-up commercializing a process created in his group to produce performance-advantaged plastics from CO2 and inedible biomass. At the TomKat Center, Matt directs programs that help Stanford students and researchers develop and commercialize innovations that impact energy and sustainability. Prior to joining the Stanford faculty in 2009, Matt did his Ph.D. studies in organic chemistry at Harvard and postdoctoral research at MIT in inorganic chemistry. He earned his B.A. in chemistry from Rice University in 2000.
-
Peter Kao
Associate Professor of Medicine (Pulmonary and Critical Care Medicine)
Current Research and Scholarly InterestsOur research program has several active projects:
1.) Pulmonary Vascular Disease Simvastatin reversed experimental pulmonary hypertension, and is safe for treatment of patients. Blinded clinical trials of efficacy are in progress.
2.) Lung inflammation and regeneration (stem cells)
3.) Lung surfactant rheology and oxidative stress
4.) Gene regulation by RNA binding proteins, NF45 and NF90 through transcriptional and posttranscriptional mechanisms -
Zerina Kapetanovic
Assistant Professor of Electrical Engineering and, by courtesy, of Computer Science and of Geophysics
BioZerina Kapetanovic is an Assistant Professor in the Department of Electrical Engineering at Stanford University working in the area of low-power wireless communication, sensing, and Internet of Things (IoT) systems. Prior to starting at Stanford, Kapetanovic was a postdoctoral researcher at Microsoft Research in the Networking Research Group and Research for Industry Group.
Kapetanovic's research has been recognized by the Yang Research Award, the Distinguished Dissertation Award from the University of Washington. She also received the Microsoft Research Distinguished Dissertation Grant and was selected to attend the 2020 UC Berkeley Rising Stars in EECS Workshop. Kapetanovic completed her PhD in Electrical Engineering from the University of Washington in 2022. -
Aharon Kapitulnik
Theodore and Sydney Rosenberg Professor of Applied Physics and Professor of Physics
On Leave from 01/01/2025 To 06/30/2025BioAharon Kapitulnik is the Theodore and Sydney Rosenberg Professor in Applied Physics at the Departments of Applied Physics and Physics at Stanford University. His research focuses on experimental condensed matter physics, while opportunistically, also apply his methods to tabletop experimental studies of fundamental phenomena in physics. His recent studies cover a broad spectrum of phenomena associated with the behavior of correlated and disordered electron systems, particularly in reduced dimensions, and the development of effective instrumentation to detect subtle signatures of physical phenomena.
Among other recognitions, his activities earned him the Alfred P. Sloan Fellowship (1986-90), a Presidential Young Investigator Award (1987-92), a Sackler Scholar at Tel-Aviv University (2006), the Heike Kamerlingh Onnes Prize for Superconductivity Experiment (2009), a RTRA (Le Triangle de la Physique) Senior Chair (2010), and the Oliver Buckley Condensed Matter Prize of the American Physical Society (2015). Aharon Kapitulnik is a Fellow of the American Physical Society, a Fellow of the American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science and a member of the National Academy of Sciences. Kapitulnik holds a Ph.D. in Physics from Tel-Aviv University (1984). -
Omer Karaduman
Assistant Professor of Operations, Information and Technology at the Graduate School of Business and Center Fellow at the Stanford Institute for Economic Policy Research and at the Precourt Institute for Energy
BioPrior to coming to Stanford, Omer completed his Ph.D. in Economics at MIT in 2020, and got his bachelor's degree in Economics from Bilkent University in 2014.
His research focuses on the transition of the energy sector towards a decarbonized and sustainable future. In his research, he utilizes large datasets by using game-theoretical modeling to have practical policy suggestions. -
Ioannis Karakikes
Associate Professor (Research) of Cardiothoracic Surgery
Current Research and Scholarly InterestsThe Karakikes Lab aims to uncover fundamental new insights into the molecular mechanisms and functional consequences of pathogenic mutations associated with familial cardiovascular diseases.
-
Hemamala Karunadasa
J.G. Jackson and C.J. Wood Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy
BioProfessor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.
Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.
Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.
Please visit the lab website for more details and recent news. -
Maya M. Kasowski
Assistant Professor of Pathology, of Medicine (Pulmonary, Allergy and Critical Care Medicine) and, by courtesy, of Genetics
BioI am a clinical pathologist and assistant professor in the Departments of Medicine, Pathology, and Genetics (by courtesy) at Stanford. I completed my MD-PhD training at Yale University and my residency training and a post-doctoral fellowship in the Department of Genetics at Stanford University. My experiences as a clinical pathologist and genome scientist have made me passionate about applying cutting-edge technologies to primary patient specimens in order to characterize disease pathologies at the molecular level. The core focus of my lab is to study the mechanisms by which genetic variants influence the risk of disease through effects on intermediate molecular phenotypes.