Independent Labs, Institutes, and Centers (Dean of Research)
Showing 1,601-1,646 of 1,646 Results
-
Joanna Wysocka
Lorry Lokey Professor and Professor of Developmental Biology
Current Research and Scholarly InterestsThe precise and robust regulation of gene expression is a cornerstone for complex biological life. Research in our laboratory is focused on understanding how regulatory information encoded by the genome is integrated with the transcriptional machinery and chromatin context to allow for emergence of form and function during human embryogenesis and evolution, and how perturbations in this process lead to disease.
-
Tony Wyss-Coray, PhD
D. H. Chen Professor II
Current Research and Scholarly InterestsUse of genetic and molecular tools to dissect immune and inflammatory pathways in Alzheimer's and neurodegeneration.
-
Yan Xia
Associate Professor of Chemistry
Current Research and Scholarly InterestsPolymer Chemistry, Microporous Polymer Membranes, Responsive Polymers, Degradable Polymers, Polymers with Unique Mechanical Behaviors, Polymer Networks, Organic Electronic Materials
-
Haopeng Xiao
Assistant Professor of Biochemistry
BioUnderstanding mechanisms of metabolic regulation in physiology and disease forms the basis for developing therapies to treat diseases in which metabolism is perturbed. We devise novel mass spectrometry (MS)-based proteomics technologies, combined with data science, to systematically discover mechanisms of metabolic regulation over protein function. Our strategies established the first tissue-specific landscape of protein cysteine redox regulation during aging, elucidating mechanisms of redox signaling in physiology that remained elusive for decades. We also leverage the genetic diversity of outbred populations to systematically annotate protein function and protein-metabolite co-regulation. The aim of our research program is to develop next-generation MS-based strategies to understand mechanisms of metabolic regulation in aging, metabolic disease, and cancer, and to use this knowledge as a basis to develop translational therapeutics.
-
Lei Xing
Jacob Haimson and Sarah S. Donaldson Professor and Professor, by courtesy, of Electrical Engineering
Current Research and Scholarly Interestsartificial intelligence in medicine, medical imaging, Image-guided intervention, molecular imaging, biology guided radiation therapy (BGRT), treatment plan optimization
-
Grace Xiong, MD
Assistant Professor of Orthopaedic Surgery
BioDr. Xiong is a fellowship-trained orthopaedic surgeon at Stanford Health Care Orthopaedic Spine Center. She is also an Assistant Professor in the Department of Orthopaedic Surgery at Stanford University School of Medicine.
Dr. Xiong specializes in spine surgery. She treats conditions including disorders of the cervical, thoracic, and lumbar spine. These include spinal stenosis, myelopathy, herniated discs, spinal trauma, spinal tumors, and revision spine surgery. She aims to work with patients to understand their lifestyle and concerns and then offer a personalized treatment plan. Dr. Xiong specializes in both traditional open and minimally invasive approaches to help restore patient quality of life and mobility.
Dr. Xiong completed medical school at Stanford School of Medicine, her residency training at the Harvard Combined Orthopaedic Residency Program in Boston, MA, and spine surgery fellowship training at the Rothman Orthopaedic Institute in Philadelphia, PA.
Dr. Xiong’s research interests include reducing disparities in access to spinal care and investigating healthcare delivery to promote health equity. She also studies infection prevention in patients who have undergone spinal surgery and the treatment of patients who develop spontaneous spinal infections.
Dr. Xiong has published in many peer-reviewed journals, including The Spine Journal, Spine, The American Journal of Sports Medicine, and Clinical Orthopaedics and Related Research. She has written several book chapters on orthopaedic subjects and has presented research at conferences and meetings around the country, as well as in Canada and China.
Dr. Xiong is a member of the American Academy of Orthopaedic Surgeons, American Orthopaedic Association, and the North American Spine Society. -
Daniel Yamins
Associate Professor of Psychology and of Computer Science
Current Research and Scholarly InterestsOur lab's research lies at intersection of neuroscience, artificial intelligence, psychology and large-scale data analysis. It is founded on two mutually reinforcing hypotheses:
H1. By studying how the brain solves computational challenges, we can learn to build better artificial intelligence algorithms.
H2. Through improving artificial intelligence algorithms, we'll discover better models of how the brain works.
We investigate these hypotheses using techniques from computational modeling and artificial intelligence, high-throughput neurophysiology, functional brain imaging, behavioral psychophysics, and large-scale data analysis. -
Fan Yang
Associate Professor of Orthopaedic Surgery and of Bioengineering
Current Research and Scholarly InterestsOur lab’s mission is to develop therapies for regenerating human tissues lost due to diseases or aging, and to build tissue engineered 3D models for understanding disease progression and informing drug discovery. We invent biomaterials and engineering tools to elucidate and modulate biology, and also use biology to inform materials and engineering design. Our work is highly interdisciplinary, and is driven by unmet clinical needs or key gaps in biology.
-
Phillip C. Yang, MD
Professor of Medicine (Cardiovascular Medicine)
Current Research and Scholarly InterestsDr. Yang is a physician-scientist whose research interest focuses on clinical translation of the fundamental molecular and cellular processes of myocardial restoration. His research employs novel in vivo multi-modality molecular and cellular imaging technology to translate the basic innovation in cardiovascular pluripotent stem cell biologics. Dr. Yang is currently a PI on the NIH/NHLBI funded CCTRN UM1 grant, which is designed to conduct multi-center clinical trial on novel biological therapy.
-
Priscilla Li-ning Yang
Professor of Microbiology and Immunology
Current Research and Scholarly InterestsWe apply chemical biology approaches to study fundamental virological processes and to develop antivirals with novel mechanisms of action.
-
Samuel Yang, MD, FACEP
Professor of Emergency Medicine (Adult Clinical/Academic)
Current Research and Scholarly InterestsDr. Yang's research is focused on bridging the translational gap at the interface of molecular biology, biochemistry, genome science, engineering, and acute care medicine. The investigative interest of the Yang lab falls within the general theme of developing integrative systems-level approaches for precision diagnostics, as well as data driven knowledge discoveries, to improve the health outcome and our understanding of complex critical illnesses. Using acute infectious disease models with complex host-pathogen dynamics, the goals of the Yang lab are divided into 3 areas:
1) Developing high-content, near-patient, diagnostic systems for rapid, unbiased pathogen detection and characterization to personalize treatment options and duration.
2) Integrating multi-omics molecular and phenotypic data layers with novel computational approaches into advanced diagnostics and predictive analytics for acute infections.
3) Understanding the biological roles of the noncanonical structures of extracellular nucleic acids in the contexts of neutrophil extracellular traps and biofilms. -
Yanmin Yang
Associate Professor of Neurology and Neurological Sciences (Neurology Research Faculty)
Current Research and Scholarly InterestsElucidate biological functions of cytoskeletal associated proteins in neurons. Define the cellular and molecular mechanisms underlying neurodegeneration in null mice.
-
Yunzhi Peter Yang
Professor of Orthopaedic Surgery and, by courtesy, of Materials Science and Engineering and of Bioengineering
Current Research and Scholarly InterestsYang lab's research interests are in the areas of bio-inspired biomaterials, medical devices, and 3D printing approaches for re-creating a suitable microenvironment for cell growth and tissue regeneration for musculoskeletal disease diagnosis and treatment, including multiple tissue healing such as rotator cuff injury, orthopedic diseases such as osteoporosis and osteonecrosis, and orthopedic traumas such as massive bone and muscle injuries.
-
Seema Yasmin
Clinical Assistant Professor, Medicine - Primary Care and Population Health
BioSeema Yasmin is an Emmy Award-winning journalist, poet, medical doctor and author. Yasmin served as an officer in the Epidemic Intelligence Service at the U.S. Centers for Disease Control and Prevention where she investigated disease outbreaks and was principal investigator on a number of CDC studies. Yasmin trained in journalism at the University of Toronto and in medicine at the University of Cambridge.
Yasmin was a finalist for the Pulitzer Prize in breaking news in 2017 with a team from The Dallas Morning News for coverage of a mass shooting, and recipient of an Emmy for her reporting on neglected diseases. She received multiple grants from the Pulitzer Center on Crisis Reporting for coverage of gender based violence in India and the aftermath of the Ebola epidemic in West Africa. In 2017, Yasmin was a John S. Knight Fellow in Journalism at Stanford University investigating the spread of health misinformation and disinformation during public health crises. Previously she was a science correspondent at The Dallas Morning News, medical analyst for CNN, and professor of public health at the University of Texas at Dallas. She teaches crisis management and crisis communication at the UCLA Anderson School of Management as a Visiting Assistant Professor.
She is the author of eight non-fiction, fiction, poetry and childrens books, including: What the Fact?! Finding the Truth in All the Noise (Simon and Schuster, 2022); Viral BS: Medical Myths and Why We Fall For Them (Johns Hopkins University Press, 2021); Muslim Women Are Everything: Stereotype-Shattering Stories of Courage, Inspiration and Adventure (HarperCollins, 2020); If God Is A Virus: Poems (Haymarket, 2021); Unbecoming: A Novel (Simon and Schuster, 2024); Djinnology: An Illuminated Compendium of Spirits and Stories from the Muslim World (Chronicle, 2024); and The ABCs of Queer History (Workman Books, 2024). Her writing appears in The New York Times, Rolling Stone, WIRED, Scientific American and other outlets.
Yasmin’s unique expertise in epidemics and communications has been called upon by the Vatican, the Presidential Commission for the Study of Bioethical Issues, the Aspen Institute, the Skoll Foundation, the Biden White House, and others. She teaches a new paradigm for trust-building and evidence-based communication to leadership at the World Health Organization and CDC. In 2019, she was the inaugural director of the Stanford Health Communication Initiative.
Her scholarly work focuses on the spread of scientific misinformation and disinformation, information equity, and the varied susceptibilities of different populations to false information about health and science. In 2020, she received a fellowship from the Emerson Collective for her work on inequitable access to health information. She teaches multimedia storytelling to medical students in the REACH program. -
Jiangbin Ye
Assistant Professor of Radiation Oncology
On Leave from 01/01/2025 To 06/30/2025Current Research and Scholarly InterestsOne hallmark of cancer is that malignant cells modulate metabolic pathways to promote cancer progression. My professional interest is to investigate the causes and consequences of the abnormal metabolic phenotypes of cancer cells in response to microenvironmental stresses such as hypoxia and nutrient deprivation, with the prospect that therapeutic approaches might be developed to target these metabolic pathways to improve cancer treatment.
-
Jason Yeatman
Associate Professor of Pediatrics (Developmental-Behavioral Pediatrics), of Education and of Psychology
BioDr. Jason Yeatman is an Associate Professor in the Graduate School of Education and Department of Psychology at Stanford University and the Division of Developmental and Behavioral Pediatrics at Stanford University School of Medicine. Dr. Yeatman completed his PhD in Psychology at Stanford where he studied the neurobiology of literacy and developed new brain imaging methods for studying the relationship between brain plasticity and learning. After finishing his PhD, he took a faculty position at the University of Washington’s Institute for Learning and Brain Sciences before returning to Stanford.
As the director of the Brain Development and Education Lab, the overarching goal of his research is to understand the mechanisms that underlie the process of learning to read, how these mechanisms differ in children with dyslexia, and to design literacy intervention programs that are effective across the wide spectrum of learning differences. His lab employs a collection of structural and functional neuroimaging measurements to study how a child’s experience with reading instruction shapes the development of brain circuits that are specialized for this unique cognitive function. -
Ellen Yeh
Associate Professor of Pathology and of Microbiology and Immunology
Current Research and Scholarly InterestsOur research program focuses on understudied microbial ecology as solutions for planet health. We select organisms with important functional traits to understand their evolution, role in the environment, and potential for bioengineering toward sustainability solutions. We are currently working on nitrogen-fixing cyanobacteria and algae, genetic screens in diatoms, and algal biofuels.
-
David C. Yeomans
Associate Professor of Anesthesiology, Perioperative and Pain Medicine, Emeritus
Current Research and Scholarly InterestsPhysiology of different pain types; Biomarkers of pain and inflammation; Gene Therapy for Pain
-
Jerome Yesavage
Jared and Mae Tinklenberg Professor and Professor, by courtesy, of Neurology and Neurological Sciences
Current Research and Scholarly InterestsWe study cognitive processes and aging in our research center. Studies range from molecular biology to neuropsychology of cognitive processes.
-
Serena Yeung-Levy
Assistant Professor of Biomedical Data Science and, by courtesy, of Electrical Engineering and of Computer Science
BioDr. Serena Yeung-Levy is an Assistant Professor of Biomedical Data Science and, by courtesy, of Computer Science and of Electrical Engineering at Stanford University. Her research focus is on developing artificial intelligence and machine learning algorithms to enable new capabilities in biomedicine and healthcare. She has extensive expertise in deep learning and computer vision, and has developed computer vision algorithms for analyzing diverse types of visual data ranging from video capture of human behavior, to medical images and cell microscopy images.
Dr. Yeung-Levy leads the Medical AI and Computer Vision Lab at Stanford. She is affiliated with the Stanford Artificial Intelligence Laboratory, the Clinical Excellence Research Center, and the Center for Artificial Intelligence in Medicine & Imaging. She is also a Chan Zuckerberg Biohub Investigator and has served on the NIH Advisory Committee to the Director Working Group on Artificial Intelligence. -
Paul Yock, MD
Martha Meier Weiland Professor in the School of Medicine and Professor of Bioengineering, Emeritus
Current Research and Scholarly InterestsHealth technology innovation using the Biodesign process: a systematic approach to the design of biomedical technologies based on detailed clinical and economic needs characterization. New approaches for interdisciplinary training of health technology innovators, including processes for identifying value opportunities in creating new technology-based approaches to health care.
-
Jong H. Yoon
Professor of Psychiatry and Behavioral Sciences (Public Mental Health & Population Sciences)
Current Research and Scholarly InterestsMy research seeks to discover the brain mechanisms responsible for schizophrenia and to translate this knowledge into the clinic to improve how we diagnose and treat this condition. Towards these ends, our group has been developing cutting-edge neuroimaging tools to identify neurobiological abnormalities and test novel systems-level disease models of psychosis and schizophrenia directly in individuals with these conditions.
We have been particularly interested in the role of neocortical-basal ganglia circuit dysfunction. A working hypothesis is that some of the core symptoms of schizophrenia are attributable to impairments in neocortical function that results in disconnectivity with components of the basal ganglia and dysregulation of their activity. The Yoon Lab has developed new high-resolution functional magnetic resonance imaging methods to more precisely measure the function of basal ganglia components, which given their small size and location deep within the brain has been challenging. This includes ways to measure the activity of nuclei that store and control the release of dopamine throughout the brain, a neurochemical that is one of the most important factors in the production of psychosis in schizophrenia and other neuropsychiatric conditions. -
Bo Yu, MD
Associate Professor of Obstetrics and Gynecology (Reproductive Endocrinology and Infertility)
On Partial Leave from 03/03/2025 To 05/09/2025Current Research and Scholarly InterestsDr. Yu’s lab is interested in ovarian physiology and pathology, as well as assisted reproductive technologies (ART).
-
Greg Zaharchuk
Professor of Radiology (Neuroimaging and Neurointervention)
Current Research and Scholarly InterestsImproving medical image quality using deep learning artificial intelligence
Imaging of cerebral hemodynamics with MRI and CT
Noninvasive oxygenation measurement with MRI
Clinical imaging of cerebrovascular disease
Imaging of cervical artery dissection
MR/PET in Neuroradiology
Resting-state fMRI for perfusion imaging and stroke -
Natalie M. Zahr
Assistant Professor (Research) of Psychiatry and Behavioral Sciences (Major Laboratories)
BioNatalie M. Zahr received a graduate education in the basic sciences including the study of neuro- pharmacology, physiology, and anatomy. After completing her graduate training in electrophysiology, she began a postdoctoral fellowship as a magnetic resonance imaging (MRI) scientist. Her work focuses on translational approaches using in vivo MR imaging and spectroscopy in studies of human with Alcohol Use Disorders (AUD) and in rodent models of alcohol exposure with the goal of identifying mechanisms of alcohol effects on the brain. Her human studies include participants with HIV, those co-morbid for HIV and AUD and recently, aging individuals with mild cognitive impairment (MCI). Her position allows her to explore emerging MR technologies and apply them to test relevant hypotheses. Before joining Stanford, she taught at several local institutions including UC Berkeley extension and Santa Clara University where she enjoyed sharing her knowledge and enthusiasm for learning with students.
-
Jamil Zaki
Professor of Psychology
Current Research and Scholarly InterestsMy research focuses on the cognitive and neural bases of social behavior, and in particular on how people respond to each other's emotions (empathy), why they conform to each other (social influence), and why they choose to help each other (prosociality).
-
Roham Zamanian
Professor of Medicine (Pulmonary and Critical Care Medicine)
Current Research and Scholarly Interests1. Development and evaluation of prognostic and diagnostic integral biomarkers in PAH.
2. Prevalence and Treatment of Insulin Resistance in PAH.
3. Role of inflammation and proteomic signature in PAH
4. Development of novel therapeutics (bench to bedside) including FK506 & Elastase Inhibition in PAH.
5. Assessment of Vasoreactivity (gain and loss) in pulmonary arterial hypertension
6. Assessment of microvascular function in PAH. -
Richard Zare
Marguerite Blake Wilbur Professor of Natural Science and Professor, by courtesy, of Physics
Current Research and Scholarly InterestsMy research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.
Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.
Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:
The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.
Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells. -
Christopher K. Zarins
Walter Clifford Chidester and Elsa Rooney Chidester Professor of Surgery, Emeritus
Current Research and Scholarly InterestsHemodynamic factors in atherosclerosis, pathogenesis of, aortic aneurysms, carotid plaque localization and complication, anastomotic intimal hyperplasia, vascular biology of artery wall, computational fluid dynamics as applied to blood flow and vascular disease.
-
Amy Zegart
Morris Arnold and Nona Jean Cox Senior Fellow at the Hoover Institution, Senior Fellow at Freeman Spogli Institute for International Studies, at Stanford Institute for Human-Centered AI, & Professor, by courtesy, of Political Science
Current Research and Scholarly InterestsU.S. intelligence, cybersecurity, political risk, grand strategy
-
James L. Zehnder, M.D.
Professor of Pathology (Research) and of Medicine (Hematology)
Current Research and Scholarly InterestsMy main research and clinical interests include molecular pathogenesis of acquired cytopenias, genetic testing for inherited non-malignant hematologic disorders, next-generation sequencing approaches to T and B cell clonality testing, somatic mutations in cancer and assessment of minimal residual disease in cancer patients.
-
Michael Zeineh
Associate Professor of Radiology (Neuroimaging and Neurointervention)
On Partial Leave from 03/10/2025 To 04/11/2025BioDr. Michael Zeineh received a B.S. in Biology at Caltech in 1995 and obtained his M.D.-Ph.D. from UCLA in 2003. After internship also at UCLA, he went on to radiology residency and neuroradiology fellowship both at Stanford. He has been faculty in Stanford Neuroradiology since 2010. He spearheads many initiatives in advanced clinical imaging at Stanford, including clinical fMRI and DTI. Simultaneously, he runs a lab with the goal of discovering new imaging abnormalities in neurodegenerative disorders, with a focus on detailed microcircuitry in regions such as the hippocampal formation using advanced, multi-modal in vivo and ex vivo methods, with applications to neurodegenerative disorders such as Alzheimer’s disease and mild traumatic brain injury.
-
Jamie Zeitzer
Professor (Research) of Psychiatry and Behavioral Sciences (Sleep Medicine)
Current Research and Scholarly InterestsDr. Zeitzer is a circadian physiologist specializing in the understanding of the impact of light on circadian rhythms and other aspects of non-image forming light perception.
He examines the manner in which humans respond to light and ways to manipulate this responsiveness, with direct application to jet lag, shift work, and altered sleep timing in teens. Dr. Zeitzer has also pioneered the use of actigraphy in the determination of epiphenomenal markers of psychiatric disorders. -
Heng Zhao
Member, Wu Tsai Neurosciences Institute
Current Research and Scholarly InterestsMy lab is focused on developing novel therapeutic methods against stroke using rodent models. We study protective effect of postconditioning, preconditioning and mild hypothermia. The rationale for studying three means of neuroprotection is that we may discover mechanisms that these treatments have in common. Conversely, if they have differing mechanisms, we will be able to offer more than one treatment for stroke and increase a patients chance for recovery.
-
Renee Zhao
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioRuike Renee Zhao is an Assistant Professor of Mechanical Engineering at Stanford University, where she directs the Soft Intelligent Materials Laboratory. Originally from the historic city of Xi'an, she earned her BS from Xi'an Jiaotong University in 2012. She then pursued Solid Mechanics at Brown University, obtaining her MS in 2014 and PhD in 2016. Following her doctoral studies, she completed postdoctoral training at MIT (2016–2018) before serving as an Assistant Professor at The Ohio State University (2018–2021).
Renee’s research focuses on developing stimuli-responsive soft composites for multifunctional robotic systems with integrated shape-changing, assembly, sensing, and navigation capabilities. By integrating mechanics, material science, and advanced material manufacturing, her work enables innovations in soft robotics, miniaturized biomedical devices, robotic surgery, origami systems, active metamaterials, and general deployable morphing structures.
Her contributions have been recognized with honors and awards, including the ARO Early Career Program (ECP) Award (2023), AFOSR Young Investigator Research Program (YIP) Award (2023), Eshelby Mechanics Award for Young Faculty (2022), ASME Henry Hess Early Career Publication Award (2022), ASME Pi Tau Sigma Gold Medal (2022), ASME Applied Mechanics Division Journal of Applied Mechanics Award (2021), NSF CAREER Award (2020), and ASME Applied Mechanics Division Haythornthwaite Research Initiation Award (2018). She is also recognized as a National Academy of Sciences Kavli Fellow and was named one of MIT Technology Review's 35 Innovators Under 35. -
Xiaolin Zheng
Professor of Mechanical Engineering, of Energy Science Engineering, Senior Fellow at the Precourt Institute for Energy and Professor, by courtesy, of Materials Science and Engineering
BioProfessor Zheng received her Ph.D. in Mechanical & Aerospace Engineering from Princeton University (2006), B.S. in Thermal Engineering from Tsinghua University (2000). Prior to joining Stanford in 2007, Professor Zheng did her postdoctoral work in the Department of Chemistry and Chemical Biology at Harvard University. Professor Zheng is a member of MRS, ACS and combustion institute. Professor Zheng received the TR35 Award from the MIT Technology Review (2013), one of the 100 Leading Global Thinkers by the Foreign Policy Magazine (2013), 3M Nontenured Faculty Grant Award (2013), the Presidential Early Career Award (PECASE) from the white house (2009), Young Investigator Awards from the ONR (2008), DARPA (2008), Terman Fellowship from Stanford (2007), and Bernard Lewis Fellowship from the Combustion Institute (2004).
-
Xueguang Zhou
Kwoh-Ting Li Professor of Economic Development and Senior Fellow at the Freeman Spogli Institute for International Studies
Current Research and Scholarly InterestsInstitutional changes in contemporary Chinese society.
-
Han Zhu
Assistant Professor of Medicine (Cardiovascular Medicine)
BioDr. Zhu is an Assistant Professor of Medicine whose clinical and research expertise focuses on cardio-oncology and cardio-immunology. She specializes in the cardiovascular care of patients undergoing therapies for cancer, with a particular focus on the effects of immunotherapies on the heart. She received a bioengineering degree from MIT, medical degree from Case Western Reserve University, and completed clinical cardiology fellowship and internal medicine residency training at Stanford University School of Medicine. Dr. Zhu’s laboratory focuses on myocarditis, cardiac inflammation, and the effects of cancer therapeutics on the cardiovascular system. Her current research employs clinical data, bio-banked samples, and in vivo/in vitro preclinical models in combination with single-cell technologies to study immune-based toxicities in the heart. Dr. Zhu's clinic sees cardio-oncology and cardio-immunology patients and her lab focuses on devising new methods for minimizing cardiovascular complications in the cancer and autoimmune patient populations.
-
Alfred Zong
Assistant Professor of Physics and Applied Physics
BioI am an assistant professor in the Departments of Physics and of Applied Physics, and my group focuses on the study of light-induced non-equilibrium phenomena in quantum materials. To capture the ultrafast dynamics on the nanoscale, we develop a variety of techniques such as ultrafast electron diffraction and microscopy, attosecond transient absorption spectroscopy, and coherent diffraction imaging. These time-resolved probes are integrated with a complex sample environment such as in-situ strain and electrostatic gating in order to design, discover, and understand non-equilibrium phases of quantum materials.
We are seeking motivated undergraduates, graduate students, and postdocs to join the group. Please email me directly to discuss opportunities.
For more details, check out the group website at https://zonglab.stanford.edu/ -
James Zou
Associate Professor of Biomedical Data Science and, by courtesy, of Computer Science and of Electrical Engineering
Current Research and Scholarly InterestsMy group works on both foundations of statistical machine learning and applications in biomedicine and healthcare. We develop new technologies that make ML more accountable to humans, more reliable/robust and reveals core scientific insights.
We want our ML to be impactful and beneficial, and as such, we are deeply motivated by transformative applications in biotech and health. We collaborate with and advise many academic and industry groups. -
J. Bradley Zuchero
Assistant Professor of Neurosurgery
Current Research and Scholarly InterestsWe are primarily focused on understanding myelinating glia (oligodendrocytes and Schwann cells). How is myelin formed, dynamically remodeled to support learning, and why does regeneration of myelin fail in disease? We are also interested in understanding novel roles of myelin in the nervous system, beyond its textbook role as an electrical insulator. We combine in vivo and primary culture models with the generation of new cell biology tools to answer these questions.