Independent Labs, Institutes, and Centers (Dean of Research)


Showing 21-40 of 131 Results

  • Hemamala Karunadasa

    Hemamala Karunadasa

    J.G. Jackson and C.J. Wood Professor of Chemistry and Senior Fellow at the Precourt Institute for Energy

    BioProfessor Hema Karunadasa works with colleagues in materials science, earth science, and applied physics to drive the discovery of new materials with applications in clean energy. Using the tools of synthetic chemistry, her group designs materials that couple the structural tunability of organic molecules with the diverse electronic and optical properties of extended inorganic solids. This research targets materials such as sorbents for capturing environmental pollutants, phosphors for solid-state lighting, and absorbers for solar cells.

    Hemamala Karunadasa studied chemistry and materials science at Princeton University (A.B. with high honors 2003; Certificate in Materials Science and Engineering 2003), where her undergraduate thesis project with Professor Robert J. Cava examined geometric magnetic frustration in metal oxides. She moved from solid-state chemistry to solution-state chemistry for her doctoral studies in inorganic chemistry at the University of California, Berkeley (Ph.D. 2009) with Professor Jeffrey R. Long. Her thesis focused on heavy atom building units for magnetic molecules and molecular catalysts for generating hydrogen from water. She continued to study molecular electrocatalysts for water splitting during postdoctoral research with Berkeley Professors Christopher J. Chang and Jeffrey R. Long at the Lawrence Berkeley National Lab. She further explored molecular catalysts for hydrocarbon oxidation as a postdoc at the California Institute of Technology with Professor Harry B. Gray. She joined the Stanford Chemistry Department faculty in September 2012. Her research explores solution-state routes to new solid-state materials.

    Professor Karunadasa’s lab at Stanford takes a molecular approach to extended solids. Lab members gain expertise in solution- and solid-state synthetic techniques and structure determination through powder- and single-crystal x-ray diffraction. Lab tools also include a host of spectroscopic and electrochemical probes, imaging methods, and film deposition techniques. Group members further characterize their materials under extreme environments and in operating devices to tune new materials for diverse applications in renewable energy.

    Please visit the lab website for more details and recent news.

  • Maya M. Kasowski

    Maya M. Kasowski

    Assistant Professor of Pathology, of Medicine (Pulmonary, Allergy and Critical Care Medicine) and, by courtesy, of Genetics

    BioI am a clinical pathologist and assistant professor in the Departments of Medicine, Pathology, and Genetics (by courtesy) at Stanford. I completed my MD-PhD training at Yale University and my residency training and a post-doctoral fellowship in the Department of Genetics at Stanford University. My experiences as a clinical pathologist and genome scientist have made me passionate about applying cutting-edge technologies to primary patient specimens in order to characterize disease pathologies at the molecular level. The core focus of my lab is to study the mechanisms by which genetic variants influence the risk of disease through effects on intermediate molecular phenotypes.

  • Riitta Katila

    Riitta Katila

    W.M. Keck Professor and Professor of Management Science and Engineering

    Current Research and Scholarly InterestsThe question that drives Prof. Katila's research is how technology-based firms with significant resources can stay innovative. Her work lies at the intersection of the fields of technology, innovation, and strategy and focuses on strategies that enable organizations to discover, develop and commercialize technologies. She combines theory with longitudinal large-sample data (e.g., robotics, biomedical, platform and multi-industry datasets), background fieldwork, and state-of-the-art quantitative methods. The ultimate objective is to understand what makes technology-based firms successful.

    To answer this question, Prof. Katila conducts two interrelated streams of research. She studies (1) strategies that help firms leverage their existing resources (leverage stream), and (2) strategies through which firms can acquire new resources (acquisition stream) to create innovation. Her early contributions were firm centric while recent contributions focus on innovation in the context of competitive interaction and ecosystems.

    Professor Katila's work has appeared in the Academy of Management Journal, Administrative Science Quarterly, Organization Science, Strategic Entrepreneurship Journal, Strategy Science, Strategic Management Journal, Research Policy and other outlets. In her work, supported by the National Science Foundation, Katila examines how firms create new products successfully. Focusing on the robotics and medical device industries, she investigates how different search approaches, such as the exploitation of existing knowledge and the exploration for new knowledge, influence the kinds of new products that technology-intensive firms introduce.

  • Daniel Katz

    Daniel Katz

    Assistant Professor of Medicine (BMIR)

    BioDaniel Katz is an Assistant Professor of Medicine in the Stanford Center for Biomedical Informatics Research (BMIR) and the Cardiovascular Medicine Divisions. He practices as an Advanced Heart Failure and Transplant Cardiologist. He completed internal medicine residency at Massachusetts General Hospital, general cardiology training at Beth Israel Deaconess Medical Center, and then joined Stanford in 2021 for his advanced heart failure training. Since medical school, his research has focused on identifying the various pathophysiologic patterns and mechanisms that lead to the heterogeneous syndrome of heart failure. His efforts leverage high dimensional data in many forms including clinical phenotypes, plasma proteomics, metabolomics, and genetics. He is presently engaged in analysis of multi-omic data from the Molecular Transducers of Physical Activity Consortium (MoTrPAC) and the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program. His clinical interests include advanced heart failure, transplant cardiology, and mechanical circulatory support.

  • Noa Katz

    Noa Katz

    Postdoctoral Scholar, Chemical Engineering

    BioNoa Katz is a Stanford Science Fellow and an EMBO and Fulbright postdoctoral scholar at Stanford University. She implements biomolecular gene circuits to study and manipulate the central nervous system to promote therapeutic applications for neural repair and autism.

  • Laurence Katznelson, MD

    Laurence Katznelson, MD

    Professor of Neurosurgery, Emeritus

    Current Research and Scholarly InterestsDr. Katznelson is an internationally known neuroendocrinologist and clinical researcher, with research expertise in the diagnosis and management of hypopituitarism, the effects of hormones on neurocognitive function, and the development of therapeutics for acromegaly and Cushing’s syndrome, and neuroendocrine tumors. Dr. Katznelson is the medical director of the multidisciplinary Stanford Pituitary Center, a program geared for patient management, clinical research and patient education

  • Amit Kaushal

    Amit Kaushal

    Adjunct Professor, Bioengineering

    BioAmit Kaushal, MD, PhD is Clinical Associate Professor of Medicine (Stanford-VA) and Adjunct Professor of Bioengineering at Stanford University. Dr. Kaushal's work spans clinical medicine, teaching, research, and industry.

    He helped launch Stanford School of Engineering's undergraduate major in Biomedical Computation (bmc.stanford.edu) and has served as long-time director of the major. The major has graduated over 70 students since inception and was recently featured in Nature (https://go.nature.com/2P2UnRu).

    His research interests are in utilizing health data in novel and ethical ways to improve the practice of medicine. He is a faculty executive member of Stanford's Partnership for AI-Assisted Care (aicare.stanford.edu). Recently, he has also been working with public health agencies to improve scale and speed of contact tracing for COVID-19.

    He has previously held executive and advisory roles at startups working at the interface of technology and healthcare.

    He continues to practice as an academic hospitalist.

    Dr. Kaushal completed his BS (Biomedical Computation), MD, PhD (Biomedical Informatics), and residency training at Stanford. He is board-certified in Internal Medicine and Clinical Informatics.

  • Makoto Kawai

    Makoto Kawai

    Clinical Associate Professor, Psychiatry and Behavioral Sciences - Sleep Medicine

    BioI am a physician scientist in the field of sleep medicine in aging and brain function. Using combined polysomnogram and novel neuroimaging technology, I aim to identify potential sleep biomarkers to investigate the mechanism of progression from normal aging to Mild Cognitive Impairment (MCI) or dementia. I also investigate the impact of sleep on cognitive/affective function or behavior abnormality in various neurodevelopmental and neurodegenerative disorders.

  • Mark A. Kay, M.D., Ph.D.

    Mark A. Kay, M.D., Ph.D.

    Dennis Farrey Family Professor of Pediatrics, and Professor of Genetics

    Current Research and Scholarly InterestsMark A. Kay, M.D., Ph.D. Director of the Program in Human Gene Therapy and Professor in the Departments of Pediatrics and Genetics. Respected worldwide for his work in gene therapy for hemophilia, Dr. Kay and his laboratory focus on establishing the scientific principles and developing the technologies needed for achieving persistent and therapeutic levels of gene expression in vivo. The major disease models are hemophilia, hepatitis C, and hepatitis B viral infections.

  • Electron Kebebew, MD, FACS

    Electron Kebebew, MD, FACS

    Harry A. Oberhelman, Jr. and Mark L. Welton Professor

    Current Research and Scholarly InterestsDr. Kebebew’s translational and clinical investigations have three main scientific goals: 1) to develop effective therapies for fatal, rare and neglected endocrine cancers, 2) to identify new methods, strategies and technologies for improving the diagnosis and treatment of endocrine neoplasms and the prognostication of endocrine cancers, and 3) to develop methods for precision treatment of endocrine tumors.

  • Corey Keller, MD, PhD

    Corey Keller, MD, PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Public Mental Health and Population Sciences)

    Current Research and Scholarly InterestsThe goal of my lab is to understand the fundamental principles of human brain plasticity and build trans-diagnostic real-time monitoring platforms for personalized neurotherapeutics.

    We use an array of neuroscience methods to better understand the basic principles of how to create change in brain circuits. We use this knowledge to develop more effective treatment strategies for depression and other psychiatric disorders.

  • Kevin Kelley

    Kevin Kelley

    Assistant Professor of Psychiatry and Behavioral Sciences (General Psychiatry and Psychology)

    BioAs a neuroscientist and psychiatrist, I am motivated by how little we understand about the pathophysiology of psychiatric disorders and hope that further knowledge will help to alleviate the ongoing distress of many of our patients. My research program leverages computational genomics, human brain cellular models, and molecular neuroscience techniques to understand the cellular and molecular mechanisms of human brain development and how dysfunction in these processes lead to psychiatric disorders.