Materials Science and Engineering


Showing 11-20 of 20 Results

  • Celeste Melamed

    Celeste Melamed

    Postdoctoral Scholar, Materials Science and Engineering

    BioCeleste Melamed is a postdoctoral scholar with the Chueh group at Stanford. Her interests include ionics, structural chemistry and transport, and materials by design, with the overarching goal of a sustainable energy economy. She is currently developing thin film synthetic methods to investigate interfacial structure and evolution in solid-state battery materials. She received her PhD in Materials Science at Colorado School of Mines and the National Renewable Energy Laboratory in 2021, where she investigated the interplay between local and long-range structure in new ternary nitrides for optoelectronic applications. She received a B.S. in Physics from Harvey Mudd College in 2015.

  • L. Julian Mele

    L. Julian Mele

    Postdoctoral Scholar, Materials Science and Engineering

    BioJulian graduated in electrical engineering and received his PhD from the University of Udine (Italy). During his PhD, he worked on electrochemical modeling of performance and noise for electronic biosensors and bioactuators. Then he continued as a postdoctoral scholar in Prof. Palestri’s group, where he focused on modeling and simulations of conjugated polymers for bioelectronic applications. He joined Prof. Salleo's group in the fall of 2022 where he is contributing to the understanding of the physical operation of organic devices.

  • Nicholas Melosh

    Nicholas Melosh

    Professor of Materials Science and Engineering

    BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
    My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.


    Research Interests:
    Bio-inorganic Interface
    Molecular materials at interfaces
    Self-Assembly and Nucleation and Growth

  • Jarod Meyer

    Jarod Meyer

    Ph.D. Student in Materials Science and Engineering, admitted Autumn 2020

    BioJarod is a PhD Student working on the Molecular Beam Epitaxy of Pb-salt, narrow-bandgap semiconductors for mid-IR optoelectronics.

  • Jordan Moore

    Jordan Moore

    Postdoctoral Scholar, Materials Science and Engineering

    BioJordan Moore is currently a postdoctoral fellow at Stanford University, appointed in both the Departments of Materials Science & Engineering and Neurology. He earned his Ph.D. from The Ohio State University within the Department of Biomedical Engineering, where he was mentored by Dr. Daniel Gallego Perez. During his doctoral studies, Jordan's research primarily centered around the application of electroporation for gene delivery in vivo, with a specific focus on cell-reprogramming.
    His work in his Ph.D. program aimed to address the restoration of blood flow to damaged peripheral nerves, contributing to the promotion of nerve regeneration and functional recovery. As a postdoctoral researcher, Jordan is currently co-mentored by Professor Sarah Heilshorn and Dr. Marion Buckwalter. In this role, he is dedicated to the development of innovative biomaterial-based platforms for gene and drug delivery. His research focuses on the treatment of stroke-related injuries and the prevention of cognitive decline.

  • Kunal Mukherjee

    Kunal Mukherjee

    Assistant Professor of Materials Science and Engineering

    BioKunal Mukherjee is an assistant professor in Materials Science and Engineering at Stanford. He has been an assistant professor in the Materials department at UC Santa Barbara (2016-2020), held postdoctoral appointments at IBM TJ Watson Research Center (2016) and MIT (2015), and worked as a transceiver engineer at Finisar (2009-2010).

    The Mukherjee group specializes in semiconductors that emit and detect light in the infrared. Our research enables better materials for data transmission, sensing, manufacturing, and environmental monitoring. We make high-quality thin films with IV-VI (PbSnSe) and III-V (GaAs-InAs/GaSb) material systems and spend much of our time understanding how imperfections in the crystalline structure such as dislocations and point defects impact their electronic and optical properties. This holds the key to directly integrating these semiconductors with silicon and germanium substrates for new hybrid circuits that combine infrared photonics and conventional electronics.