Institute for Computational and Mathematical Engineering (ICME)


Showing 1-10 of 10 Results

  • Vijay Pande

    Vijay Pande

    Henry Dreyfus Professor of Chemistry and Professor, by courtesy, of Structural Biology

    Current Research and Scholarly InterestsThe central theme of our research is to develop and apply novel theoretical methods to understand the physical properties of biological molecules, such as proteins, nucleic acids, lipid membranes, and small molecule therapeutics (eg protein folding or lipid vesicle fusion). As these phenomena are complex, my research employs novel theoretical and computational techniques. We apply these methods to develop novel therapeutics for protein misfolding diseases, such as Alzheimer's Disease.

  • Arogyaswami Paulraj

    Arogyaswami Paulraj

    Professor (Research) of Electrical Engineering, Emeritus

    BioProfessor Emeritus Arogyaswami Paulraj, Stanford University, is a pioneer of MIMO wireless communications, a technology break through that enables improved wireless performance. MIMO is now incorporated into all new wireless systems.

    Paulraj is the author of over 400 research papers, two text books and a co-inventor in 66 US patents.
    Paulraj has won over a dozen awards, notably the Marconi Prize and Fellowship, 2014 and the IEEE Alexander Graham Bell Medal, 2011. He is a fellow of eight scientific / engineering national academies including the US, China, India and Sweden. He is a fellow of IEEE and AAAS.

    In 1999, Paulraj founded Iospan Wireless Inc. - which developed and established MIMO-OFDMA wireless as the core 4G technology. Iospan was acquired in by Intel Corporation in 2003. In 2004, he co-founded Beceem Communications Inc. The company became the market leader in 4G-WiMAX semiconductor and was acquired by Broadcom Corp. in 2010. In 2014 he founded Rasa Networks to develop Machine Learning tools for WiFi Networks. The company was acquired HPE in 2016.

    During his 30 years in the Indian (Navy) (1961-1991), he founded three national level laboratories in India and headed one of India’s most successful military R&D projects – APSOH sonar. He received over a dozen awards (many at the national level) in India including the Padma Bhushan, Ati Vishist Seva Medal and the VASVIK Medal.

  • Marco Pavone

    Marco Pavone

    Assistant Professor of Aeronautics and Astronautics and, by courtesy, of Electrical Engineering

    BioDr. Marco Pavone is an Assistant Professor of Aeronautics and Astronautics at Stanford University, where he also holds courtesy appointments in the Department of Electrical Engineering, in the Institute for Computational and Mathematical Engineering, and in the Information Systems Laboratory. He is a Research Affiliate at the NASA Jet Propulsion Laboratory (JPL), California Institute of Technology. Before joining Stanford, he was a Research Technologist within the Robotics Section at JPL. He received a Ph.D. degree in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2010. Dr. Pavone’s areas of expertise lie in the fields of controls and robotics.

    Dr. Pavone is a recipient of a NASA Early Career Faculty award, a Hellman Faculty Scholar Award, and was named NASA NIAC Fellow in 2011. At JPL, Dr. Pavone worked on the end-to-end optimization of the mission architecture for the Mars sample return mission. He has designed control algorithms for formation flying that have been successfully tested on board the International Space Station.

    Dr. Pavone is the Director of the Autonomous Systems Laboratory (ASL). The goal of ASL is the development of methodologies for the analysis, design, and control of autonomous systems, with a particular emphasis on large-scale robotic networks and autonomous aerospace vehicles. The lab combines expertise from control theory, robotics, optimization, and operations research to develop the theoretical foundations for networked autonomous systems operating in uncertain, rapidly-changing, and potentially adversarial environments. Theoretical insights are then used to devise practical, computationally-efficient, and provably-correct algorithms for field deployment. Applications include robotic transportation networks, sensor networks, agile control of spacecraft during proximity operations, and mobility platforms for extreme planetary environments. Collaborations with NASA centers are a key component of the research portfolio.

  • Mackenzie Pearson

    Mackenzie Pearson

    Masters Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioI am a first year Master's student in the Data Science Track of ICME. I graduated from McGill University in 2015 with a Bachelor of Science degree in Applied Mathematics. Upon graduation, I sought out an internship opportunity at Picton Mahoney Asset Management. I worked closely with one of their quantitative analysts, helping with the development of his analytical toolbox and creating new database scrubbing programs. At the end of my internship, I was offered a position with the Quantitative Infrastructure team. This experience opened my eyes to the profound impact that data science can have in industry. Seeking new opportunities I was driven to Stanford where I hope to enrich my knowledge of data science while discovering and gaining access to new socially responsible careers within the field of big data.

  • Jacob Perricone

    Jacob Perricone

    Masters Student in Computational and Mathematical Engineering, admitted Autumn 2016

    BioBorn in San Diego, CA, but raised in New York City, I am returning to my home coast to study Computational and Mathematical Engineering (ICME) with a focus on Computational Finance. I graduated from Princeton University in 2016 with a B.S.E in Operations Research and Financial Engineering and a certificate in Computer Science. As an undergraduate I did research ranging from the design of transportation networks to multi-period portfolio optimization. My interests include sequence to sequence learning, distributed processing, stochastic methods, quantitative finance, and optimization theory. Outside of academics, I enjoy running, soccer, moves, and CrossFit.

  • Peter M Pinsky

    Peter M Pinsky

    Professor of Mechanical Engineering and, by courtesy, of Civil Engineering

    BioPinsky works in the theory and practice of computational mechanics with a particular interest in multiphysics problems in biomechanics. His work uses the close coupling of techniques for molecular, statistical and continuum mechanics with biology, chemistry and clinical science. Areas of current interest include the mechanics of human vision (ocular mechanics) and the mechanics of hearing. Topics in the mechanics of vision include the mechanics of transparency, which investigates the mechanisms by which corneal tissue self-organizes at the molecular scale using collagen-proteoglycan-ion interactions to explain the mechanical resilience and almost perfect transparency of the tissue and to provide a theoretical framework for engineered corneal tissue replacement. At the macroscopic scale, advanced imaging data is used to create detailed models of the 3-D organization of collagen fibrils and the results used to predict outcomes of clinical techniques for improving vision as well as how diseased tissue mechanically degrades. Theories for mass transport and reaction are being developed to model metabolic processes and swelling in tissue. Current topics in the hearing research arena include multiscale modeling of hair-cell mechanics in the inner ear including physical mechanisms for the activation of mechanically-gated ion channels. Supporting research addresses the mechanics of lipid bilayer cell membranes and their interaction with the cytoskeleton. Recent past research topics include computational acoustics for exterior, multifrequency and inverse problems; and multiscale modeling of transdermal drug delivery. Professor Pinsky currently serves as Chair of the Mechanics and Computation Group within the Department of Mechanical Engineering at Stanford.