School of Engineering


Showing 1-10 of 33 Results

  • Grace Gao

    Grace Gao

    Associate Professor of Aeronautics and Astronautics

    BioGrace Gao is an associate professor in the Department of Aeronautics and Astronautics at Stanford University. She leads the Navigation and Autonomous Vehicles Laboratory (NAV Lab). Before joining Stanford University, she was faculty at University of Illinois at Urbana-Champaign. She obtained her Ph.D. degree at Stanford University. Her research is on robust and secure perception, localization and navigation with applications to manned and unmanned aerial vehicles, autonomous driving cars, as well as space robotics.

    Prof. Gao has won a number of awards, including the NSF CAREER Award, the Institute of Navigation Early Achievement Award and the RTCA William E. Jackson Award. She received the Inspiring Early Academic Career Award from Stanford University, Distinguished Promotion Award and Dean's Award for Excellence in Research from University of Illinois at Urbana-Champaign. She has won Best Paper/Presentation of the Session Awards 29 times at Institute of Navigation conferences over the span of 17 years. For her teaching and advising, Prof. Gao has been on the List of Teachers Ranked as Excellent by Their Students multiple times. She won the College of Engineering Everitt Award for Teaching Excellence, the Engineering Council Award for Excellence in Advising, and AIAA Illinois Chapter’s Teacher of the Year. Prof. Gao also received AIAA Stanford Chapter Excellence in Advising Award and Excellence in Teaching Award in 2022 and 2023, respectively.

  • Xiaojing Gao

    Xiaojing Gao

    Assistant Professor of Chemical Engineering

    Current Research and Scholarly InterestsHow do we design biological systems as “smart medicine” that sense patients’ states, process the information, and respond accordingly? To realize this vision, we will tackle fundamental challenges across different levels of complexity, such as (1) protein components that minimize their crosstalk with human cells and immunogenicity, (2) biomolecular circuits that function robustly in different cells and are easy to deliver, (3) multicellular consortia that communicate through scalable channels, and (4) therapeutic modules that interface with physiological inputs/outputs. Our engineering targets include biomolecules, molecular circuits, viruses, and cells, and our approach combines quantitative experimental analysis with computational simulation. The molecular tools we build will be applied to diverse fields such as neurobiology and cancer therapy.

  • Matthias Garten

    Matthias Garten

    Assistant Professor of Microbiology and Immunology and of Bioengineering

    Current Research and Scholarly InterestsWith a creative, collaborative, biophysical mindset, we aim to understand the ability non-model organisms to interface with environment to a point at which we can exploit the mechanisms finding cures against diseases and use the mechanisms as tools that we can use to engineer the environment. By developing approaches that allow a quantitative understanding and manipulation of molecular transport our research makes non-model organisms accessible to researchers and engineers.

    Specifically, we are studying how the malaria parasite takes control over red blood cells. By learning the biophysical principles of transport in between the host and the parasite we can design ways to kill the parasite or exploit it to reengineer red blood cells. The transport we study is broadly encompassing everything from ions to lipids and proteins. We use variations of quantitative microscopy and electrophysiology to gain insight into the unique strategies the parasite evolved to survive.

  • Michael Genesereth

    Michael Genesereth

    Associate Professor of Computer Science

    BioGenesereth is most known for his work on Computational Logic and applications of that work in Enterprise Management, Computational Law, and General Game Playing. He is one of the founders of Teknowledge, CommerceNet, Mergent Systems, and Symbium. Genesereth is the director of the Logic Group at Stanford and the founder and research director of CodeX - the Stanford Center for Legal Informatics.

  • J. Christian Gerdes

    J. Christian Gerdes

    Professor of Mechanical Engineering, Emeritus

    BioChris Gerdes is a Professor Emeritus of Mechanical Engineering at Stanford University. His laboratory studies how cars move, how humans drive cars and how to design future cars that work cooperatively with the driver or drive themselves. Vehicles in the lab include X1, a student-built electric, steer-by-wire test vehicle; Takumi, a modified Toyota Supra capable of autonomous drifting in tandem with another car; and Marty, the electrified, automated, drifting DeLorean. Chris' interests in vehicle safety extend to ethics and government policy, having helped to develop the US Federal Automated Vehicle Policy while serving as the first Chief Innovation Officer of the US Department of Transportation.

  • Margot Gerritsen

    Margot Gerritsen

    Professor of Energy Resources Engineering, Emerita

    Current Research and Scholarly InterestsResearch
    My work is about understanding and simulating complicated fluid flow problems. My research focuses on the design of highly accurate and efficient parallel computational methods to predict the performance of enhanced oil recovery methods. I'm particularly interested in gas injection and in-situ combustion processes. These recovery methods are extremely challenging to simulate because of the very strong nonlinearities in the governing equations. Outside petroleum engineering, I'm active in coastal ocean simulation with colleagues from the Department of Civil and Environmental Engineering, yacht research and pterosaur flight mechanics with colleagues from the Department of Mechanical and Aeronautical Engineering, and the design of search algorithms in collaboration with the Library of Congress and colleagues from the Institute of Computational and Mathematical Engineering.

    Teaching
    I teach courses in both energy related topics (reservoir simulation, energy, and the environment) in my department, and mathematics for engineers through the Institute of Computational and Mathematical Engineering (ICME). I also initiated two courses in professional development in our department (presentation skills and teaching assistant training), and a consulting course for graduate students in ICME, which offers expertise in computational methods to the Stanford community and selected industries.

    Professional Activities
    Senior Associate Dean, School of Earth, Energy and Environmental Sciences, Stanford (from 2015); Director, Institute for Computational and Mathematical Engineering, Stanford (from 2010); Stanford Fellow (2010-2012); Magne Espedal Professor II, Bergen University (2011-2014); Aldo Leopold Fellow (2009); Chair, SIAM Activity group in Geosciences (2007, present, reelected in 2009); Faculty Research Fellow, Clayman Institute (2008); Elected to Council of Society of Industrial and Applied Mathematics (SIAM) (2007); organizing committee, 2008 Gordon Conference on Flow in Porous Media; producer, Smart Energy podcast channel; Director, Stanford Yacht Research; Co-director and founder, Stanford Center of Excellence for Computational Algorithms in Digital Stewardship; Editor, Journal of Small Craft Technology; Associate editor, Transport in Porous Media; Reviewer for various journals and organizations including SPE, DoE, NSF, Journal of Computational Physics, Journal of Scientific Computing, Transport in Porous Media, Computational Geosciences; member, SIAM, SPE, KIVI, AGU, and APS