School of Engineering
Showing 1-5 of 5 Results
-
J. Christian Gerdes
Professor of Mechanical Engineering, Emeritus
BioChris Gerdes is a Professor of Mechanical Engineering at Stanford University and Co-Director of the Center for Automotive Research at Stanford (CARS). His laboratory studies how cars move, how humans drive cars and how to design future cars that work cooperatively with the driver or drive themselves. When not teaching on campus, he can often be found at the racetrack with students, trying out their latest prototypes for the future. Vehicles in the lab include X1, an entirely student-built test vehicle; Niki, a Volkswagen GTI capable of turning a competitive lap time around the track without a human driver; and Marty, our electrified, automated, drifting DeLorean. Chris' interests in vehicle safety extend to ethics and government policy, having helped to develop the US Federal Automated Vehicle Policy while serving as the first Chief Innovation Officer of the US Department of Transportation.
-
Siegfried Glenzer
Professor of Photon Science and, by courtesy, of Mechanical Engineering
On Leave from 09/15/2023 To 09/14/2024Current Research and Scholarly InterestsPlease see our website for detailed information: https://heds.slac.stanford.edu
-
Kenneth Goodson
Davies Family Provostial Professor and Senior Associate Dean for Research and Faculty Affairs
Current Research and Scholarly InterestsProf. Goodson’s Nanoheat Lab studies heat transfer in electronic nanostructures, microfluidic heat sinks, and packaging, focussing on basic transport physics and practical impact for industry. We work closely with companies on novel cooling and packaging strategies for power devices, portables, ASICs, & data centers. At present, sponsors and collaborators include ARPA-E, the NSF POETS Center, SRC ASCENT, Google, Intel, Toyota, Ford, among others.
-
Wendy Gu
Assistant Professor of Mechanical Engineering and, by courtesy, of Materials Science and Engineering
BioThe Gu Group studies the mechanical behavior of nanomaterials. We work at the intersection of solid mechanics, materials science and nano-chemistry. We research the unique properties of nanoscale metals, ceramics and nano-architected composites in order to design strong, tough and lightweight structural materials, materials for extreme environments, and mechanically-actuated sensors. Our experimental tools include nanoindentation, electron microscopy, and colloidal synthesis.