School of Engineering
Showing 1-20 of 20 Results
-
Danielle Mai
Assistant Professor of Chemical Engineering and, by courtesy, of Materials Science and Engineering
BioDanielle J. Mai joined the Department of Chemical Engineering at Stanford in January 2020. She earned her B.S.E. in Chemical Engineering from the University of Michigan and her M.S. and Ph.D. in Chemical Engineering from the University of Illinois at Urbana-Champaign under the guidance of Prof. Charles M. Schroeder. Dr. Mai was an Arnold O. Beckman Postdoctoral Fellow in Prof. Bradley D. Olsen's group at MIT, where she engineered materials with selective biomolecular transport properties, elucidated mechanisms of toughness and extensibility in entangled associative hydrogels, and developed high-throughput methods for the discovery of polypeptide materials. The Mai Lab engineers biopolymers, which are the building blocks of life. Specifically, the group integrates precise biopolymer engineering with multi-scale experimental characterization to advance biomaterials development and to enhance fundamental understanding of soft matter physics. Dr. Mai's work has been recognized through the AIChE 35 Under 35 Award (2020), APS DPOLY/UKPPG Lecture Exchange (2021), Air Force Office of Scientific Research Young Investigator Program Award (2022), ACS PMSE Arthur K. Doolittle Award (2023), and MIT Technology Review List of 35 Innovators Under 35 (2023).
-
Dr. Arun Majumdar
Dean, Stanford Doerr School of Sustainability, Jay Precourt Professor, Professor of Mechanical Eng, of Energy Science & Eng, of Photon Science, Sr Fellow at Woods and, by courtesy, at Hoover & Professor, by court, of Materials Science & Eng
BioDr. Arun Majumdar is the inaugural Dean of the Stanford Doerr School of Sustainability. He is the Jay Precourt Provostial Chair Professor at Stanford University, a faculty member of the Departments of Mechanical Engineering and Energy Science and Engineering, a Senior Fellow and former Director of the Precourt Institute for Energy and Senior Fellow (courtesy) of the Hoover Institution. He is also a faculty in Department of Photon Science at SLAC.
In October 2009, Dr. Majumdar was nominated by President Obama and confirmed by the Senate to become the Founding Director of the Advanced Research Projects Agency - Energy (ARPA-E), where he served until June 2012 and helped ARPA-E become a model of excellence and innovation for the government with bipartisan support from Congress and other stakeholders. Between March 2011 and June 2012, he also served as the Acting Under Secretary of Energy, enabling the portfolio of Office of Energy Efficiency and Renewable Energy, Office of Electricity Delivery and Reliability, Office of Nuclear Energy and the Office of Fossil Energy, as well as multiple cross-cutting efforts such as Sunshot, Grid Modernization Team and others that he had initiated. Furthermore, he was a Senior Advisor to the Secretary of Energy, Dr. Steven Chu, on a variety of matters related to management, personnel, budget, and policy. In 2010, he served on Secretary Chu's Science Team to help stop the leak of the Deep Water Horizon (BP) oil spill.
Dr. Majumdar serves as the Chair of the Advisory Board of the US Secretary of Energy, Jennifer Granholm. He led the Agency Review Team for the Department of Energy, Federal Energy Regulatory Commission and the Nuclear Regulatory Commission during the Biden-Harris Presidential transition. He served as the Vice Chairman of the Advisory Board of US Secretary of Energy, Dr. Ernest Moniz, and was also a Science Envoy for the US Department of State with focus on energy and technology innovation in the Baltics and Poland. He also serves on numerous advisory boards and boards of businesses, investment groups and non-profit organizations.
After leaving Washington, DC and before joining Stanford, Dr. Majumdar was the Vice President for Energy at Google, where he assembled a team to create technologies and businesses at the intersection of data, computing and electricity grid.
Dr. Majumdar is a member of the US National Academy of Sciences, US National Academy of Engineering and the American Academy of Arts and Sciences. His research in the past has involved the science and engineering of nanoscale materials and devices, especially in the areas of energy conversion, transport and storage as well as biomolecular analysis. His current research focuses on redox reactions and systems that are fundamental to a sustainable energy future, multidimensional nanoscale imaging and microscopy, and an effort to leverage modern AI techniques to develop and deliver energy and climate solutions.
Prior to joining the Department of Energy, Dr. Majumdar was the Almy & Agnes Maynard Chair Professor of Mechanical Engineering and Materials Science & Engineering at University of California–Berkeley and the Associate Laboratory Director for energy and environment at Lawrence Berkeley National Laboratory. He also spent the early part of his academic career at Arizona State University and University of California, Santa Barbara.
Dr. Majumdar received his bachelor's degree in Mechanical Engineering at the Indian Institute of Technology, Bombay in 1985 and his Ph.D. from the University of California, Berkeley in 1989. -
Andrew J. Mannix
Assistant Professor of Materials Science and Engineering
Current Research and Scholarly InterestsAtomically thin 2D materials incorporated into van der Waals heterostructures are a promising platform to deterministically engineer quantum materials with atomically resolved thickness and abrupt interfaces across macroscopic length scales while retaining excellent material properties. Because 2D materials exhibit a wide range of electronic characteristics with properties that often rival conventional electronic materials — e.g., metals, semiconductors, insulators, and superconductors — it is possible to combine them in virtually infinite variety to achieve diverse heterostructures. Furthermore, the van der Waals interface enables interlayer twist engineering to modify the interlayer symmetry, periodic potential (moiré superlattice), and hybridization, which has resulted in novel quantum states of matter. Many of these heterostructures, especially those involving specific interlayer twist angles, would be otherwise infeasible through direct growth.
The Mannix Group is developing a unique set of in-house capabilities to systematically elucidate the fundamental structure-property relationships underpinning the growth of 2D materials and their inclusion into van der Waals heterostructures. Greater understanding will allow us to provide a platform for engineering the properties of matter at the atomic scale and offer guidance for emerging applications in novel electronics and in quantum information science.
To accomplish this, we employ: precise growth techniques such as chemical vapor deposition and molecular beam epitaxy; automated van der Waals assembly; and atomically-resolved microscopy including cryo-STM/AFM. -
Paul McIntyre
Rick and Melinda Reed Professor and Professor of Photon Science
BioMcIntyre's group performs research on nanostructured inorganic materials for applications in electronics, energy technologies and sensors. He is best known for his work on metal oxide/semiconductor interfaces, ultrathin dielectrics, defects in complex metal oxide thin films, and nanostructured Si-Ge single crystals. His research team synthesizes materials, characterizes their structures and compositions with a variety of advanced microscopies and spectroscopies, studies the passivation of their interfaces, and measures functional properties of devices.
-
Celeste Melamed
Postdoctoral Scholar, Materials Science and Engineering
BioCeleste Melamed is a postdoctoral scholar with the Chueh group at Stanford. Her interests include ionics, structural chemistry and transport, and materials by design, with the overarching goal of a sustainable energy economy. She is currently developing thin film synthetic methods to investigate interfacial structure and evolution in solid-state battery materials. She received her PhD in Materials Science at Colorado School of Mines and the National Renewable Energy Laboratory in 2021, where she investigated the interplay between local and long-range structure in new ternary nitrides for optoelectronic applications. She received a B.S. in Physics from Harvey Mudd College in 2015.
-
L. Julian Mele
Postdoctoral Scholar, Materials Science and Engineering
BioJulian graduated in electrical engineering and received his PhD from the University of Udine (Italy). During his PhD, he worked on electrochemical modeling of performance and noise for electronic biosensors and bioactuators. Then he continued as a postdoctoral scholar in Prof. Palestri’s group, where he focused on modeling and simulations of conjugated polymers for bioelectronic applications. He joined Prof. Salleo's group in the fall of 2022 where he is contributing to the understanding of the physical operation of organic devices.
-
Nicholas Melosh
Professor of Materials Science and Engineering
BioThe Melosh group explores how to apply new methods from the semiconductor and self-assembly fields to important problems in biology, materials, and energy. We think about how to rationally design engineered interfaces to enhance communication with biological cells and tissues, or to improve energy conversion and materials synthesis. In particular, we are interested in seamlessly integrating inorganic structures together with biology for improved cell transfection and therapies, and designing new materials, often using diamondoid molecules as building blocks.
My group is very interested in how to design new inorganic structures that will seamless integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano- and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.
Research Interests:
Bio-inorganic Interface
Molecular materials at interfaces
Self-Assembly and Nucleation and Growth -
Jarod Meyer
Ph.D. Student in Materials Science and Engineering, admitted Autumn 2020
BioJarod is a PhD Student working on the Molecular Beam Epitaxy of Pb-salt, narrow-bandgap semiconductors for mid-IR optoelectronics.
-
Jordan Moore
Postdoctoral Scholar, Materials Science and Engineering
BioJordan Moore is currently a postdoctoral fellow at Stanford University, appointed in both the Departments of Materials Science & Engineering and Neurology. He earned his Ph.D. from The Ohio State University within the Department of Biomedical Engineering, where he was mentored by Dr. Daniel Gallego Perez. During his doctoral studies, Jordan's research primarily centered around the application of electroporation for gene delivery in vivo, with a specific focus on cell-reprogramming.
His work in his Ph.D. program aimed to address the restoration of blood flow to damaged peripheral nerves, contributing to the promotion of nerve regeneration and functional recovery. As a postdoctoral researcher, Jordan is currently co-mentored by Professor Sarah Heilshorn and Dr. Marion Buckwalter. In this role, he is dedicated to the development of innovative biomaterial-based platforms for gene and drug delivery. His research focuses on the treatment of stroke-related injuries and the prevention of cognitive decline. -
Kunal Mukherjee
Assistant Professor of Materials Science and Engineering
BioKunal Mukherjee is an assistant professor in Materials Science and Engineering at Stanford. He has been an assistant professor in the Materials department at UC Santa Barbara (2016-2020), held postdoctoral appointments at IBM TJ Watson Research Center (2016) and MIT (2015), and worked as a transceiver engineer at Finisar (2009-2010).
The Mukherjee group specializes in semiconductors that emit and detect light in the infrared. Our research enables better materials for data transmission, sensing, manufacturing, and environmental monitoring. We make high-quality thin films with IV-VI (PbSnSe) and III-V (GaAs-InAs/GaSb) material systems and spend much of our time understanding how imperfections in the crystalline structure such as dislocations and point defects impact their electronic and optical properties. This holds the key to directly integrating these semiconductors with silicon and germanium substrates for new hybrid circuits that combine infrared photonics and conventional electronics.